INTERNATIONAL JOURNAL OF GEOMETRY Vol. 6 (2017), No. 1, 61 - 66

NOTE ON THE ADJOINT SPIEKER POINTS

Dorin ANDRICA Cătălin BARBU and Adela LUPESCU

Abstract. In this note, we define and study the Speaker adjoint points of a triangle. The properties of some configurations involving these points are obtained by geometric methods and by using complex coordinates.

1. INTRODUCTION

Given a triangle ABC, denote by O the circumcenter, I the incenter, G the centroid, N the Nagel point, s the semiperimeter, R the circumradius, and r the inradius of ABC. Let M_a, M_b, M_c be the midpoints of the sides BC, CA, AB respectively. The Spieker point S_p of ABC is defined as the incenter of the median triangle $M_aM_bM_c$ of the triangle ABC. It is the center X(10) in the Clark Kimberling's Encyclopedia of Triangle Centers and it has an important place in the modern triangle geometry. It is well-known that the line IN is called the Nagel line of the triangle ABC. The Spieker point S_p of ABC is situated on the Nagel line, and it is the midpoint of the segment [IN]. We shall introduce and study the points S_p^a, S_p^b, S_p^c , the adjoint points of the Spieker point S_p , and we show that they share similar properties as S_p (see Figure 1).

Keywords and phrases: Spieker point, adjoint Spieker point, Nagel point (2010)Mathematics Subject Classification: 51M15

Received: 5.02.2017. In revised form: 18.03.2017. Accepted: 26.03.2017.

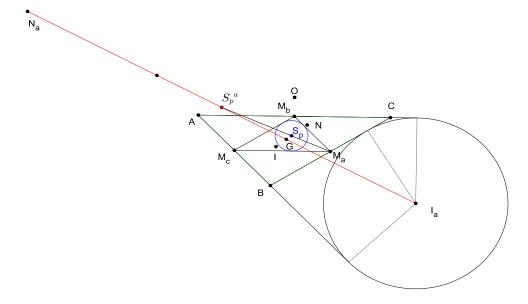


Figure 1

2. THE SPIEKER CONFIGURATION

In this section we consider an arbitrary triangle ABC with the circumcenter O, the incenter I, the excenters I_a , I_b , I_c , and N_a , N_b , N_c the adjoint points OF the Nagel point N. For the definition and some properties of the adjoint points N_a , N_b , N_c we refer to the paper of D. Andrica and K.L. Nguyen [2]. Let s, R, r, r_a , r_b , r_c be the semiperimeter, the circumradius, the inradius, and the exradii of triangle ABC, respectively. We know that points I_a , G, N_a are collinear and the relation $I_aN_a = 3I_aG$ holds. The similar properties hold for the triples of points N_b , G, I_b and N_c , G, I_c . These three lines are called the adjoint Nagel lines of the triangle ABC. The famous formulas for the distances OI_a and ON_a are given by

$$OI_a^2 = R^2 + 2Rr_a.$$

and

$$ON_a = R + 2r_a.$$

For a proof by using complex numbers we refer to the paper [2].

The **adjoint Spieker points** S_p^a, S_p^b, S_p^c of the Spieker point S_p of ABC are the excenters of the medial triangle $M_aM_bM_c$ of the triangle ABC. We called the triangle $S_p^aS_p^bS_p^c$ the **Spieker's triangle**.

Theorem 2.1. The adjoint Spieker point S_p^a of ABC is the midpoint of the segment N_aI_a .

Proof. Let S_1, S_2, S_3 be the midpoints of $N_a I_a, N_b I_b, N_c I_c$, respectively. First, we will prof that the triangles $S_1 S_2 S_3$ and $M_a M_b M_c$ are perspective at the Spieker point S_p . Because the angles $\widehat{AGI_a}$ and $\widehat{S_1GM_a}$ are equal and

$$\frac{AG}{GM_a} = \frac{I_aG}{GS_1} = 2,$$

it results that triangles AGI_a and M_aGS_1 are similar (see Figure 2).

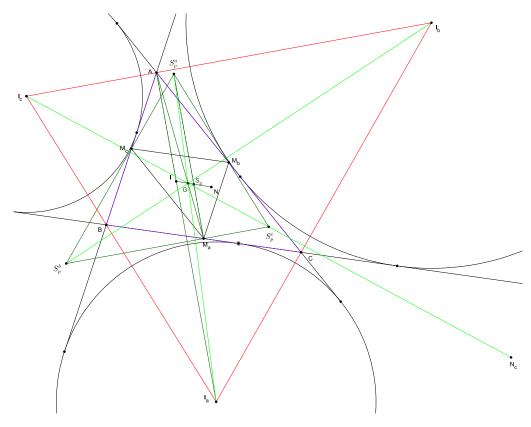


Figure 2

From this property we obtain $AI_a||SM_a$. But $AB||M_aM_b, AC||M_aM_c$ and AI_a is the interior bisector of angle \widehat{BAC} , thus M_aS_1 is the bisector of $\widehat{M_bM_aM_c}$. We obtain that the Spieker point S_p of triangle ABC is situated on the line M_aS_1 . Analogously, we get that S_p is on the lines M_bS_2 and

 M_cS_3 . Because

$$\frac{GI_a}{GS_1} = \frac{GI_b}{GS_2} = \frac{GI_c}{GS_3} = 2,$$

it follows that the triangle $S_1S_2S_3$ is homothetic to the external triangle $I_aI_bI_c$ by the homothety of center G and ratio -2. Since I is the orthocenter of triangle $I_aI_bI_c$ and S_p is imagine of I by this homotety, we get that S_p is the orthocenter of triangle $S_1S_2S_3$. Because $M_aM_bM_c$ is the orthic triangle of $S_1S_2S_3$, it follows that S_1, S_2, S_3 are the excenters of the median triangle $M_aM_bM_c$ of the triangle ABC. Thus we get the conclusion.

Theorem 2.2. The triangle $S_p^a S_p^b S_p^c$ is homothetic to $N_a N_b N_c$ by the homothety of center G and ratio 3.

Proof.

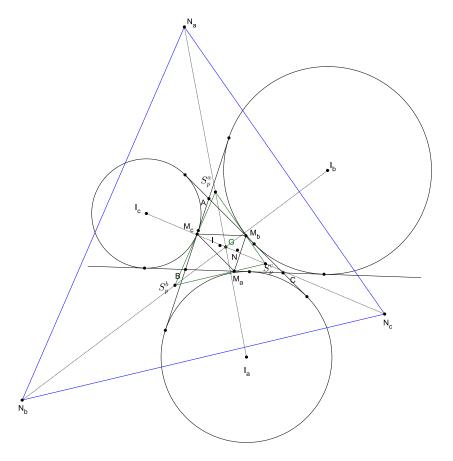


Figure 3

The lines $S_p^a N_a, S_p^b N_b$ and $S_p^c N_c$ are concurrent at G (see Figure 3), and we have the relations

$$\frac{GN_a}{GS_p^a} = \frac{GN_b}{GS_p^b} = \frac{GN_c}{GS_p^c} = 3.$$

Theorem 2.3. The triangle $S_p^a S_p^b S_p^c$ is homothetic to the external triangle $I_a I_b I_c$ by the homothety of center G and ratio -2.

Since I is the orthocenter of $I_aI_bI_c$, we obtain the following consequence.

Corollary 2.4. The Spieker point S_p of triangle ABC is the orthocenter of triangle $S_p^a S_p^b S_p^c$.

Corollary 2.5. The median triangle $M_aM_bM_c$ of the triangle ABC is the orthic triangle of the Spieker triangle $S_p^aS_p^bS_p^c$.

Corollary 2.6. The triangles $S_p^a S_p^b S_p^c$ and $I_a I_b I_c$ are orthologic having I and S_p as centers of orthology.

Corollary 2.7. The Speaker triangle $S_p^a S_p^b S_p^c$ and the median triangle $M_a M_b M_c$ of ABC are in perspective at the Spieker point S_p .

Corollary 2.8. The points M_a, M_b, M_c lie on the sides of the Spieker triangle of ABC.

3. COMPLEX COORDINATES APPROACH

In this section, we gave an alternative proof to Theorem 2.1 by using complex numbers.

Assume that the circumcenter O of triangle ABC is the origin of the complex plan and let z_A, z_B, z_C be the complex coordinates of A, B, C respectively. It is not difficult to calculate the complex coordinates of the points I_a and N_a (see [2]):

(3)
$$z_{I_a} = \frac{-az_A + bz_B + cz_C}{2(s-a)}$$

and

(4)
$$z_{N_a} = \frac{sz_A - (s - c)z_B - (s - b)z_C}{s - a}.$$

From the relations (3) and (4) we obtain the complex coordinates of the midpoint S of the segment I_aN_a :

(5)
$$z_S = \frac{z_{N_a} + z_{I_a}}{2} = \frac{(b+c)z_A + (c-a)z_B + (b-a)z_C}{4(s-a)}.$$

Using the complex coordinates of the midpoints M_a, M_b, M_c , it follows that

(6)
$$z_{S_p^a} = \frac{-\frac{a}{2}z_{M_a} + \frac{b}{2}z_{M_b} + \frac{c}{2}z_{M_c}}{2(\frac{s}{2} - \frac{a}{2})} = \frac{(b+c)z_A + (c-a)z_B + (b-a)z_C}{4(s-a)}.$$

From the relations (5) and (6) we obtain the conclusion.

Remark 1. Analogously, the adjoint Spieker points S_p^b and S_p^c of ABC are the midpoints of the segments I_bN_b and I_cN_c , respectively.

References

- Andreescu, T. and Andrica, D., Complex Numbers from A to ... Z, Second Edition, Birkhauser, Boston, 2014.
- [2] Andrica, D., Nguyen, K., A note on the Nagel and Gergonne points, Creative Math & Inf., 17 (2008), 127 - 136
- [3] Barbu, C., Fundamental Theorems in the Triangle Geometry (Romanian), Unique Publishing House, Bacău, 2008.

"BABEŞ-BOLYAI" UNIVERSITY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE KOGALNICEANU 1, 400084 CLUJ-NAPOCA, ROMANIA

E-mail address: dandrica@math.ubbcluj.ro

E-mail address: ade@cs.ubbcluj.ro

"VASILE ALECSANDRI" NATIONAL COLLEGE VASILE ALECSANDRI 37, 600011 BACAU, ROMANIA

E-mail address: kafka_mate@yahoo.com