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1 Introduction

Hyperbolic Geometry appeared in the first half of the 19th century as an attempt to
understand Euclid’s axiomatic basis of Geometry. It is also known as a type of non-Euclidean
Geometry, being in many respects similar to Euclidean Geometry. Hyperbolic Geometry
includes similar concepts as distance and angle. Both these geometries have many results in
common but many are different.

There are known many models for Hyperbolic Geometry, such as: Poincaré disc model,
Poincaré half-plane, Klein model, Einstein relativistic velocity model, etc. Here, in this study,
we present a proof of Ceva’s theorem in the Poincaré disc model of hyperbolic geometry. The
Euclidean version of this well-known theorem states that if three lines from the vertices of
a triangle A1A2A3 are concurrent at M, and meet the opposite sides at P,Q,R respectively,
then A1P

PA2
∙ A2R

RA3
∙ A3Q

QA1
= 1 [7]. This result has a simple statement but it is of great interest. We

just mention here few different proofs given by N.A.Court [3], D.Grindberg [5], R.Honsberg
[6], A.Ungar [11].

We begin with the recall of some basic geometric notions and properties in the Poincaré
disc. Let D denote the unit disc in the complex z - plane, i.e.D = {z ∈ C : |z| < 1} The most
general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the Möbius transformation of the disc
to be viewed as a Möbius left gyro-translation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the complex conjugate
of z0. Let Aut(D,⊕) be the automorphism group of the grupoid (D,⊕).

If we define

gyr : D × D → Aut(D,⊕), gyr[a, b] =
a ⊕ b

b ⊕ a
=

1 + ab

1 + ab
,

then is true gyro-commutative lawa ⊕ b = gyr[a, b](b ⊕ a).
A gyro-vector space (G,⊕,⊗) is a gyro-commutative gyro-group (G,⊕) that obeys the

following axioms: (1)gyr[u,v]a∙ gyr[u,v]b = a ∙ b for all points a,b,u,v ∈G.

(2)G admits a scalar multiplication, ⊗, possessing the following properties. For all real
numbers r, r1, r2 ∈ R and all points a ∈G:

(G1) 1 ⊗ a = a
(G2) (r1 + r2) ⊗ a = r1 ⊗ a ⊕ r2 ⊗ a
(G3) (r1r2) ⊗ a = r1 ⊗ (r2 ⊗ a)

(G4) |r|⊗a
‖r⊗a‖ = a

‖a‖

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1
(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of one-dimensional ”vectors”

‖G‖ = {±‖a‖ : a ∈ G} ⊂ R
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with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R and a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖
(G8) ‖a ⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖

Theorem 1.1 (The law of gyrosines in Möbius gyrovector spaces). Let ABC be
a gyrotriangle in a Möbius gyrovector space (Vs,⊕,⊗) with vertices A,B,C ∈ Vs, sides
a,b, c ∈ Vs, and side gyrolengths a, b, c ∈ (−s, s), a = 	B ⊕ C, b = 	C ⊕ A, c = 	A ⊕ B,
a = ‖a‖ , b = ‖b‖ , c = ‖c‖ , and with gyroangles α, β, and γ at the vertices A,B, and C.

Then aγ

sin α = bγ

sin β = cγ

sin γ , where vγ = v

1− v2

s2

[10,p.267].

Definition 1.2 The hyperbolic distance function in D is defined by the equation

d(a, b) = |a 	 b| =

∣
∣
∣
∣

a − b

1 − ab

∣
∣
∣
∣ .

Here, a 	 b = a ⊕ (−b), for a, b ∈ D.

For further details we refer to the recent book of A.Ungar [10].

Definition 1.3 The symmetric of the median of a triangle with respect to the internal bisector
issued from the same vertex is called symmedian.

Theorem 1.4 (The Gyrotriangle Bisector Theorem). Let ABC be a gyrotriangle in a
Möbius gyrovector space (Vs,⊕,⊗) with vertices A,B,C ∈ Vs, sides a,b, c ∈ Vs, and side
gyrolengths a, b, c ∈ (−s, s), a = 	B ⊕ C, b = 	C ⊕ A, c = 	A ⊕ B, a = ‖a‖ , b = ‖b‖ ,
c = ‖c‖ , and let D be a point lying on side BC of the gyrotriangle such that AD is a bisector
of gyroangle ∠BAC. Then

(DB)γ

(DC)γ
=

(AB)γ

(AC)γ
,

where vγ = v

1− v2

s2

[1].

2 Main results

In this section we prove the Ceva’s theorem in the Poincaré disc model of hyperbolic
geometry.

Theorem 2.1 (The Ceva’s Theorem for Hyperbolic Gyrotriangle) If M is a point
not on any side of a gyrotriangle A1A2A3 such that A3M and A1A2 meet in P, A2M and
A3A1 in Q, and A1M and A2A3 meet in R, then

(A1P )γ

(A2P )γ
∙
(A2R)γ

(A3R)γ
∙
(A3Q)γ

(A1Q)γ
= 1
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Proof. The law of gyrosines (See Theorem 1.1), gives for the gyrotriangles A1MP and
A1MP (See Figure 1) respectively,

(A1P )γ

sin Â1MP
=

(A1M)γ

sin Â1PM
(1)

(A2P )γ

sin Â2MP
=

(A2M)γ

sin Â2PM
(2)

where sin Â1PM = sin Â2PM since gyroangles Â1PM and Â2PM are suplementary. Hence,
by (1) and (2), we have

(A1P )γ

(A2P )γ
=

(A1M)γ

(A2M)γ
∙
sin Â1MP

sin Â2MP
=

(A1M)γ

(A2M)γ
∙
sin Â1MA3

sin Â2MA3

(3)

Similary, applying the law of gyrosines to the pair of gyrotriangles A2MR and A3MR, we
have

(A2R)γ

(A3R)γ
=

(A2M)γ

(A3M)γ
∙
sin Â2MA1

sin Â3MA1

(4)

and applying the law of gyrosines to the pair of gyrotriangles A2MR and A3MR, we have

(A3Q)γ

(A1Q)γ
=

(A3M)γ

(A1M)γ
∙
sin Â3MA2

sin Â1MA2

(5)

Now, from (3)-(5) we obtain

(A1P )γ

(A2P )γ
∙
(A2R)γ

(A3R)γ
∙
(A3Q)γ

(A1Q)γ
=

(
(A1M)γ

(A2M)γ
∙
sin Â1MA3

sin Â2MA3

)

∙

(
(A2M)γ

(A3M)γ
∙
sin Â2MA1

sin Â3MA1

)

∙

(
(A3M)γ

(A1M)γ
∙
sin Â3MA2

sin Â1MA2

)

= 1

�

Naturally, one may wonder whether the converse of the Ceva theorem exists. Indeed, a
partially converse theorem does exist as we show in the following theorem.

Theorem 2.2 (Converse of Ceva’s Theorem for Hyperbolic Gyrotriangle) If P lies
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on the gyroline A1A2, R on A2A3, and Q on A3A1 such that

(A1P )γ

(A2P )γ
∙
(A2R)γ

(A3R)γ
∙
(A3Q)γ

(A1Q)γ
= 1, (*)

and two of the gyrolines A1R, A2Q and A3P meet, then all three are concurrent.

Proof. If P lies between A1 and A2, then A3P cuts the gyrosegment A1R in M . Also,
A2M cuts gyroside A3A1 in Q′. Applying Ceva’s theorem to the gyrotriangle A1A2A3 and
the point M, we get

(A1P )γ

(A2P )γ
∙
(A2R)γ

(A3R)γ
∙
(A3Q

′)γ

(A1Q′)γ
= 1 (6)

From (∗) and (6), we get (A3Q)γ

(A1Q)γ
= (A3Q′)γ

(A1Q′)γ
. This equation holds for Q = Q′. Indeed, if we take

x := |	A3 ⊕ Q′| and b := |	A3 ⊕ A1| , then we get b	x = |	Q′ ⊕ A1| . For x ∈ (−1, 1) define

f(x) =
x

1 − x2
:

b 	 x

1 − (b 	 x)2
.

Because b 	 x = b−x
1−bx , then f(x) = x(1−b2)

(b−x)(1−bx) . Since the following equality holds

f(x) − f(y) =
b(1 − b2)(1 − xy)

(b − x)(1 − bx)(b − y)(1 − by)
(x − y),

we get f(x) is an injective function and this implies Q = Q′. A similar argument applies if Q
lies between A1 and A3.

Now suppose that P is situated beyond A2, and Q beyond A3, then the gyrolines A2Q and
A3P meet at M , which lies within the gyroangle A2A1A3 (See Figure 2). Now A1M cuts the
gyrosegment A2A3 in the gyropoint R′. Consequently R = R′, so the gyrolines are concurrent.
Next suppose that the gyropoint P is situated beyond A2, and Q beyond A1 (See Figure 3).
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Then the gyroline A2Q enters gyroangle PA2A3 at A2, and so cuts A3P at M . Since M is
situated within the gyroangle A2A1A3, A1M cuts the gyrosegment A2A3 in the gyropoint R′.
As a consequence R = R′, so the gyrolines are concurrent. The case where P is beyond A1,
and Q beyond A3 is similar. There are with cases where both P and Q are situated beyond
A1 (See Figure 4).

By using the hypotheses we suppose first that the gyrolines A2Q and A3P meet in the gyro-
point M. Then M is situated within gyroangle QAP, so A1M meets the gyrosegment A2A3 in
the gyropoint R′. Consequently R = R′, so the gyrolines are concurrent. Suppose next that
A2Q and A3P meet in the gyropoint M, then M and A3 lie on opposite sides of A1A2, so
A3M meets A1A2 in the gyropoint P ′. Consequently P = P ′, so the gyrolines are concurrent.
�

Corollary 2.3 The gyromedians of a gyrotriangle A1A2A3 are concurrent.

Proof. Let P,Q,R are the midpoints of the gyrosides A2A1, A1A3, and A3A1 respectively
(See Figure 1). Because (A1P )γ = (A2P )γ , (A2R)γ = (A3R1)γ , and (A3Q)γ = (A1Q)γ , then

(A1P )γ

(A2P )γ
∙
(A2R)γ

(A3R)γ
∙
(A3Q)γ

(A1Q)γ
= 1.

The gyromedians all lie within the gyrotriangle, so any two must meet. Thus, by the Converse
of Ceva’s Theorem, the gyromedians A1R, A2Q and A3P are concurrent. �

Theorem 2.4 (The Hyperbolic Theorem of Steiner). If the gyrolines A1P and A1Q
are two isogonals of a vertex A1 of a gyrotriangle A1A2A3, and the gyropoints P and Q are
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on the gyroside A2A3, then

(CQ)γ

(A2Q)γ
∙

(CP )γ

(A2P )γ
=

(
(CA1)γ

(A2A1)γ

)2

.

Proof. We set ∠A2A1Q = ∠PA1A3 = θ,∠A1QA2 = ε1,∠A1QA3 = ε2,∠A1PA2 =
λ1,∠A1PA3 = λ2 (See Figure 5).

If we use the gyrosines theorem in the triangles A1A2Q,A1A3Q,A1A3P,A1A2P respectively
(See Theorem 1.1), then

sin θ

(A2Q)γ
=

sin ε1
(A2A1)γ

, (7)

sin(A1 − θ)
(A3Q)γ

=
sin ε2

(A3A1)γ
, (8)

sin θ

(A3P )γ
=

sin λ2

(A3A1)γ
, (9)

sin(A1 − θ)
(A2P )γ

=
sin λ1

(A2A1)γ
. (10)

If ratios the equations (7) and (8) among themselves, respectively, and because sin(π − θ) =
sin θ, then

sin θ

sin(A1 − θ)
∙
(A3Q)γ

(A2Q)γ
=

(A3A1)γ

(A2A1)γ
. (11)

If ratios the equations (9) and (10) among themselves, respectively, then

sin θ

sin(A1 − θ)
∙
(A2P )γ

(A3P )γ
=

(A2A1)γ

(A3A1)γ
. (12)

If ratios the equations (11) and (12) among themselves, respectively, then

(A3Q)γ

(A2Q)γ
∙
(A3P )γ

(A2P )γ
=

(
(A3A1)γ

(A2A1)γ

)2

. (13)

�
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Corollary 2.5 If the gyroline A1P is a gyrosymmedian of a gyrotriangle A1A2A3, and the
point P is on the gyroside A2A3, then

(A3P )γ

(A2P )γ
=

(
(A3A1)γ

(A2A1)γ

)2

. (14)

Proof. Let A1Q be the gyromedian in the gyrotriangle A1A2A3 (See Figure 5). If we use
theorem 2.3 for the isogonals A1P and A1Q, we obtain

(A3Q)γ

(A2Q)γ
∙
(A3P )γ

(A2P )γ
=

(
(A3A1)γ

(A2A1)γ

)2

.

Because (A3Q)γ = (A2Q)γ , the conclusion follows. �

Corollary 2.6 The gyrosymedians of a gyrotriangle are concurrent.

Proof. Let A1A2A3 be a gyrotriangle, and let the gyrosymedians be A1R, A2Q and A3P .
If we use the Corollary 2.2 we get

(A3R)γ

(A2R)γ
=

(
(A3A1)γ

(A2A1)γ

)2

, (15)

and
(A1Q)γ

(A3Q)γ
=

(
(A1A2)γ

(A3A2)γ

)2

, (16)

and
(A2P )γ

(A1P )γ
=

(
(A2A3)γ

(A1A3)γ

)2

. (17)

From (15), (16), and (17) we obtain

(A3R)γ

(A2R)γ
∙
(A1Q)γ

(A3Q)γ
∙
(A2P )γ

(A1P )γ
= 1,

and from Theorem 2.2 we get the conclusion. �

Corollary 2.7 The internal angle bisectors of a gyrotriangle A1A2A3 are concurrent.

Proof. Let A1A2A3 be a gyrotriangle, and let the angle bisectors be A1R, A2Q and A3P
(See Figure 1). If we use the Theorem 1.2 we get

(A3R)γ

(A2R)γ
=

(A3A1)γ

(A2A1)γ
, (18)

and
(A1Q)γ

(A3Q)γ
=

(A1A2)γ

(A3A2)γ
, (19)

and
(A2P )γ

(A1P )γ
=

(A2A3)γ

(A1A3)γ
. (20)
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From (18), (19), and (20) we obtain

(A3R)γ

(A2R)γ
∙
(A1Q)γ

(A3Q)γ
∙
(A2P )γ

(A1P )γ
= 1.

The angle bisectors all lie within the gyrotriangle, so any two must meet. Thus, by the
Converse of Ceva’s Theorem, the internal angle bisectors A1R, A2Q and A3P are concurrent.
�

Many of the theorems of Euclidean geometry are relatively similar form in the Poincaré
model of hyperbolic geometry, Ceva’s theorem and Stewart’s theorem are an examples in this
respect. In the Euclidean limit of large s, s → ∞, vγ reduces to v, so the relations (∗) and
(13) reduces to

A1P

A2P
∙
A2R

A3R
∙
A3Q

A1Q
= 1,

and
A3Q

A2Q
∙
A3P

A2P
=

(
A3A1

A2A1

)2

in euclidian geometry.
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