Automation

Computers
Applied Mathematics
ISSN 1221-437X
Vol. 19 (2010) no. 1
PP. 35-43

The Hyperbolic Version of Ceva's Theorem in the Poincaré

 Disc ModelDorin Andrica, Cătălin Barbu

Andrica Dorin: Babeş Bolyai University of Cluj Napoca, Romania
dorinandrica@yahoo.com
Barbu Cătălin: "Vasile Alecsandri" College, Bacău, str. Vasile Alecsandri nr. 37, 600011 Bacău, Romania
kafka_mate@yahoo.com

> AbStract: $\begin{aligned} & \text { In this note, we present the hyperbolic version of Ceva's theorem in the } \\ & \text { Poincaré disc model. }\end{aligned}$ KEY Words: hyperbolic geometry, hyperbolic triangle, gyrovector MSC 2010: $30 \mathrm{~F} 45,20 \mathrm{~N} 99,51 \mathrm{~B} 10,51 \mathrm{M} 10$ RECEIVED:

1 Introduction

Hyperbolic Geometry appeared in the first half of the $19^{\text {th }}$ century as an attempt to understand Euclid's axiomatic basis of Geometry. It is also known as a type of non-Euclidean Geometry, being in many respects similar to Euclidean Geometry. Hyperbolic Geometry includes similar concepts as distance and angle. Both these geometries have many results in common but many are different.

There are known many models for Hyperbolic Geometry, such as: Poincaré disc model, Poincaré half-plane, Klein model, Einstein relativistic velocity model, etc. Here, in this study, we present a proof of Ceva's theorem in the Poincaré disc model of hyperbolic geometry. The Euclidean version of this well-known theorem states that if three lines from the vertices of a triangle $A_{1} A_{2} A_{3}$ are concurrent at M, and meet the opposite sides at P, Q, R respectively, then $\frac{A_{1} P}{P A_{2}} \cdot \frac{A_{2} R}{R A_{3}} \cdot \frac{A_{3} Q}{Q A_{1}}=1[7]$. This result has a simple statement but it is of great interest. We just mention here few different proofs given by N.A.Court [3], D.Grindberg [5], R.Honsberg [6], A.Ungar [11].

We begin with the recall of some basic geometric notions and properties in the Poincaré disc. Let D denote the unit disc in the complex z - plane, i.e. $D=\{z \in \mathbb{C}:|z|<1\}$ The most general Möbius transformation of D is

$$
z \rightarrow e^{i \theta} \frac{z_{0}+z}{1+\overline{z_{0}} z}=e^{i \theta}\left(z_{0} \oplus z\right),
$$

which induces the Möbius addition \oplus in D, allowing the Möbius transformation of the disc to be viewed as a Möbius left gyro-translation

$$
z \rightarrow z_{0} \oplus z=\frac{z_{0}+z}{1+\overline{z_{0}} z}
$$

followed by a rotation. Here $\theta \in \mathbb{R}$ is a real number, $z, z_{0} \in D$, and $\overline{z_{0}}$ is the complex conjugate of z_{0}. Let $\operatorname{Aut}(D, \oplus)$ be the automorphism group of the grupoid (D, \oplus).

If we define

$$
g y r: D \times D \rightarrow \operatorname{Aut}(D, \oplus), g y r[a, b]=\frac{a \oplus b}{b \oplus a}=\frac{1+a \bar{b}}{1+\bar{a} b}
$$

then is true gyro-commutative law $a \oplus b=\operatorname{gyr}[a, b](b \oplus a)$.
A gyro-vector space (G, \oplus, \otimes) is a gyro-commutative gyro-group (G, \oplus) that obeys the following axioms: (1) gyr $[\mathbf{u}, \mathbf{v}] \mathbf{a} \cdot \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{b}=\mathbf{a} \cdot \mathbf{b}$ for all points $\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v} \in G$.
(2) G admits a scalar multiplication, \otimes, possessing the following properties. For all real numbers $r, r_{1}, r_{2} \in \mathbb{R}$ and all points $\mathbf{a} \in G$:
(G1) $1 \otimes \mathbf{a}=\mathbf{a}$
(G2) $\left(r_{1}+r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes \mathbf{a} \oplus r_{2} \otimes \mathbf{a}$
(G3) $\left(r_{1} r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes\left(r_{2} \otimes \mathbf{a}\right)$
(G4) $\frac{|r| \otimes \mathbf{a}}{\|r \otimes a\|}=\frac{\mathbf{a}}{\|\mathbf{a}\|}$
(G5) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}](r \otimes \mathbf{a})=r \otimes g y r[\mathbf{u}, \mathbf{v}] \mathbf{a}$
(G6) $g y r\left[r_{1} \otimes \mathbf{v}, r_{1} \otimes \mathbf{v}\right]=1$
(3) Real vector space structure $(\|G\|, \oplus, \otimes)$ for the set $\|G\|$ of one-dimensional "vectors"

$$
\|G\|=\{ \pm\|\mathbf{a}\|: \mathbf{a} \in G\} \subset \mathbb{R}
$$

with vector addition \oplus and scalar multiplication \otimes, such that for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in G$,
$(G 7)\|r \otimes \mathbf{a}\|=|r| \otimes\|\mathbf{a}\|$
(G8) $\|\mathbf{a} \oplus \mathbf{b}\| \leq\|\mathbf{a}\| \oplus\|\mathbf{b}\|$
Theorem 1.1 (The law of gyrosines in Möbius gyrovector spaces). Let $A B C$ be a gyrotriangle in a Möbius gyrovector space $\left(V_{s}, \oplus, \otimes\right)$ with vertices $A, B, C \in V_{s}$, sides $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{V}_{s}$, and side gyrolengths $a, b, c \in(-s, s), \mathbf{a}=\ominus B \oplus C, \mathbf{b}=\ominus C \oplus A, \mathbf{c}=\ominus A \oplus B$, $a=\|\mathbf{a}\|, b=\|\mathbf{b}\|, c=\|\mathbf{c}\|$, and with gyroangles α, β, and γ at the vertices A, B, and C. Then $\frac{a_{\gamma}}{\sin \alpha}=\frac{b_{\gamma}}{\sin \beta}=\frac{c_{\gamma}}{\sin \gamma}$, where $v_{\gamma}=\frac{v}{1-\frac{v^{2}}{s^{2}}}$ [10,p.267].

Definition 1.2 The hyperbolic distance function in D is defined by the equation

$$
d(a, b)=|a \ominus b|=\left|\frac{a-b}{1-\bar{a} b}\right| .
$$

Here, $a \ominus b=a \oplus(-b)$, for $a, b \in D$.
For further details we refer to the recent book of A.Ungar [10].
Definition 1.3 The symmetric of the median of a triangle with respect to the internal bisector issued from the same vertex is called symmedian.

Theorem 1.4 (The Gyrotriangle Bisector Theorem). Let $A B C$ be a gyrotriangle in a Möbius gyrovector space $\left(V_{s}, \oplus, \otimes\right)$ with vertices $A, B, C \in V_{s}$, sides $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{V}_{s}$, and side gyrolengths $a, b, c \in(-s, s), \mathbf{a}=\ominus B \oplus C, \mathbf{b}=\ominus C \oplus A, \mathbf{c}=\ominus A \oplus B, a=\|\mathbf{a}\|, b=\|\mathbf{b}\|$, $c=\|\mathbf{c}\|$, and let D be a point lying on side $B C$ of the gyrotriangle such that $A D$ is a bisector of gyroangle $\angle B A C$. Then

$$
\frac{(D B)_{\gamma}}{(D C)_{\gamma}}=\frac{(A B)_{\gamma}}{(A C)_{\gamma}},
$$

where $v_{\gamma}=\frac{v}{1-\frac{v^{2}}{s^{2}}}[1]$.

2 Main results

In this section we prove the Ceva's theorem in the Poincaré disc model of hyperbolic geometry.

Theorem 2.1 (The Ceva's Theorem for Hyperbolic Gyrotriangle) If M is a point not on any side of a gyrotriangle $A_{1} A_{2} A_{3}$ such that $A_{3} M$ and $A_{1} A_{2}$ meet in $P, A_{2} M$ and $A_{3} A_{1}$ in Q, and $A_{1} M$ and $A_{2} A_{3}$ meet in R, then

$$
\frac{\left(A_{1} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}} \cdot \frac{\left(A_{2} R\right)_{\gamma}}{\left(A_{3} R\right)_{\gamma}} \cdot \frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{1} Q\right)_{\gamma}}=1
$$

Proof. The law of gyrosines (See Theorem 1.1), gives for the gyrotriangles $A_{1} M P$ and $A_{1} M P$ (See Figure 1) respectively,

$$
\begin{align*}
& \frac{\left(A_{1} P\right)_{\gamma}}{\sin \widehat{A_{1} M P}}=\frac{\left(A_{1} M\right)_{\gamma}}{\sin \widehat{A_{1} P M}} \tag{1}\\
& \frac{\left(A_{2} P\right)_{\gamma}}{\sin \widehat{A_{2} M P}}=\frac{\left(A_{2} M\right)_{\gamma}}{\sin \widehat{A_{2} P M}} \tag{2}
\end{align*}
$$

where $\sin \widehat{A_{1} P M}=\sin \widehat{A_{2} P M}$ since gyroangles $\widehat{A_{1} P M}$ and $\widehat{A_{2} P M}$ are suplementary. Hence, by (1) and (2), we have

$$
\begin{equation*}
\frac{\left(A_{1} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}}=\frac{\left(A_{1} M\right)_{\gamma}}{\left(A_{2} M\right)_{\gamma}} \cdot \frac{\sin \widehat{A_{1} M P}}{\sin \widehat{A_{2} M P}}=\frac{\left(A_{1} M\right)_{\gamma}}{\left(A_{2} M\right)_{\gamma}} \cdot \frac{\sin \widehat{A_{1} M A_{3}}}{\sin \widehat{A_{2} M A_{3}}} \tag{3}
\end{equation*}
$$

Similary, applying the law of gyrosines to the pair of gyrotriangles $A_{2} M R$ and $A_{3} M R$, we have

$$
\begin{equation*}
\frac{\left(A_{2} R\right)_{\gamma}}{\left(A_{3} R\right)_{\gamma}}=\frac{\left(A_{2} M\right)_{\gamma}}{\left(A_{3} M\right)_{\gamma}} \cdot \frac{\sin \widehat{A_{2} M A_{1}}}{\sin \widehat{A_{3} M A_{1}}} \tag{4}
\end{equation*}
$$

and applying the law of gyrosines to the pair of gyrotriangles $A_{2} M R$ and $A_{3} M R$, we have

$$
\begin{equation*}
\frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{1} Q\right)_{\gamma}}=\frac{\left(A_{3} M\right)_{\gamma}}{\left(A_{1} M\right)_{\gamma}} \cdot \frac{\sin \widehat{A_{3} M A_{2}}}{\sin \widehat{A_{1} M A_{2}}} \tag{5}
\end{equation*}
$$

Now, from (3)-(5) we obtain

$$
\begin{gathered}
\frac{\left(A_{1} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}} \cdot \frac{\left(A_{2} R\right)_{\gamma}}{\left(A_{3} R\right)_{\gamma}} \cdot \frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{1} Q\right)_{\gamma}}= \\
\left(\frac{\left(A_{1} M\right)_{\gamma}}{\left(A_{2} M\right)_{\gamma}} \cdot \frac{\sin \widehat{A_{1} M A_{3}}}{\sin \widehat{A_{2} M A_{3}}}\right) \cdot\left(\frac{\left(A_{2} M\right)_{\gamma}}{\left(A_{3} M\right)_{\gamma}} \cdot \frac{\sin \widehat{A_{2} M A_{1}}}{\sin \widehat{A_{3} M A_{1}}}\right) \cdot\left(\frac{\left(A_{3} M\right)_{\gamma}}{\left(A_{1} M\right)_{\gamma}} \cdot \frac{\sin \widehat{A_{3} M A_{2}}}{\sin \widehat{A_{1} M A_{2}}}\right)=1
\end{gathered}
$$

Naturally, one may wonder whether the converse of the Ceva theorem exists. Indeed, a partially converse theorem does exist as we show in the following theorem.

Theorem 2.2 (Converse of Ceva's Theorem for Hyperbolic Gyrotriangle) If P lies
on the gyroline $A_{1} A_{2}, R$ on $A_{2} A_{3}$, and Q on $A_{3} A_{1}$ such that

$$
\begin{equation*}
\frac{\left(A_{1} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}} \cdot \frac{\left(A_{2} R\right)_{\gamma}}{\left(A_{3} R\right)_{\gamma}} \cdot \frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{1} Q\right)_{\gamma}}=1 \tag{*}
\end{equation*}
$$

and two of the gyrolines $A_{1} R, A_{2} Q$ and $A_{3} P$ meet, then all three are concurrent.

Proof. If P lies between A_{1} and A_{2}, then $A_{3} P$ cuts the gyrosegment $A_{1} R$ in M. Also, $A_{2} M$ cuts gyroside $A_{3} A_{1}$ in Q^{\prime}. Applying Ceva's theorem to the gyrotriangle $A_{1} A_{2} A_{3}$ and the point M, we get

$$
\begin{equation*}
\frac{\left(A_{1} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}} \cdot \frac{\left(A_{2} R\right)_{\gamma}}{\left(A_{3} R\right)_{\gamma}} \cdot \frac{\left(A_{3} Q^{\prime}\right)_{\gamma}}{\left(A_{1} Q^{\prime}\right)_{\gamma}}=1 \tag{6}
\end{equation*}
$$

From $(*)$ and (6), we get $\frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{1} Q\right)_{\gamma}}=\frac{\left(A_{3} Q^{\prime}\right)_{\gamma}}{\left(A_{1} Q^{\prime}\right)_{\gamma}}$. This equation holds for $Q=Q^{\prime}$. Indeed, if we take $x:=\left|\ominus A_{3} \oplus Q^{\prime}\right|$ and $b:=\left|\ominus A_{3} \oplus A_{1}\right|$, then we get $b \ominus x=\left|\ominus Q^{\prime} \oplus A_{1}\right|$. For $x \in(-1,1)$ define

$$
f(x)=\frac{x}{1-x^{2}}: \frac{b \ominus x}{1-(b \ominus x)^{2}}
$$

Because $b \ominus x=\frac{b-x}{1-b x}$, then $f(x)=\frac{x\left(1-b^{2}\right)}{(b-x)(1-b x)}$. Since the following equality holds

$$
f(x)-f(y)=\frac{b\left(1-b^{2}\right)(1-x y)}{(b-x)(1-b x)(b-y)(1-b y)}(x-y)
$$

we get $f(x)$ is an injective function and this implies $Q=Q^{\prime}$. A similar argument applies if Q lies between A_{1} and A_{3}.

Now suppose that P is situated beyond A_{2}, and Q beyond A_{3}, then the gyrolines $A_{2} Q$ and $A_{3} P$ meet at M, which lies within the gyroangle $A_{2} A_{1} A_{3}$ (See Figure 2). Now $A_{1} M$ cuts the gyrosegment $A_{2} A_{3}$ in the gyropoint R^{\prime}. Consequently $R=R^{\prime}$, so the gyrolines are concurrent. Next suppose that the gyropoint P is situated beyond A_{2}, and Q beyond A_{1} (See Figure 3).

Then the gyroline $A_{2} Q$ enters gyroangle $P A_{2} A_{3}$ at A_{2}, and so cuts $A_{3} P$ at M. Since M is situated within the gyroangle $A_{2} A_{1} A_{3}, A_{1} M$ cuts the gyrosegment $A_{2} A_{3}$ in the gyropoint R^{\prime}. As a consequence $R=R^{\prime}$, so the gyrolines are concurrent. The case where P is beyond A_{1}, and Q beyond A_{3} is similar. There are with cases where both P and Q are situated beyond A_{1} (See Figure 4).

By using the hypotheses we suppose first that the gyrolines $A_{2} Q$ and $A_{3} P$ meet in the gyropoint M. Then M is situated within gyroangle $Q A P$, so $A_{1} M$ meets the gyrosegment $A_{2} A_{3}$ in the gyropoint R^{\prime}. Consequently $R=R^{\prime}$, so the gyrolines are concurrent. Suppose next that $A_{2} Q$ and $A_{3} P$ meet in the gyropoint M, then M and A_{3} lie on opposite sides of $A_{1} A_{2}$, so $A_{3} M$ meets $A_{1} A_{2}$ in the gyropoint P^{\prime}. Consequently $P=P^{\prime}$, so the gyrolines are concurrent.

Corollary 2.3 The gyromedians of a gyrotriangle $A_{1} A_{2} A_{3}$ are concurrent.
Proof. Let P, Q, R are the midpoints of the gyrosides $A_{2} A_{1}, A_{1} A_{3}$, and $A_{3} A_{1}$ respectively (See Figure 1). Because $\left(A_{1} P\right)_{\gamma}=\left(A_{2} P\right)_{\gamma},\left(A_{2} R\right)_{\gamma}=\left(A_{3} R_{1}\right)_{\gamma}$, and $\left(A_{3} Q\right)_{\gamma}=\left(A_{1} Q\right)_{\gamma}$, then

$$
\frac{\left(A_{1} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}} \cdot \frac{\left(A_{2} R\right)_{\gamma}}{\left(A_{3} R\right)_{\gamma}} \cdot \frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{1} Q\right)_{\gamma}}=1
$$

The gyromedians all lie within the gyrotriangle, so any two must meet. Thus, by the Converse of Ceva's Theorem, the gyromedians $A_{1} R, A_{2} Q$ and $A_{3} P$ are concurrent.

Theorem 2.4 (The Hyperbolic Theorem of Steiner). If the gyrolines $A_{1} P$ and $A_{1} Q$ are two isogonals of a vertex A_{1} of a gyrotriangle $A_{1} A_{2} A_{3}$, and the gyropoints P and Q are
on the gyroside $A_{2} A_{3}$, then

$$
\frac{(C Q)_{\gamma}}{\left(A_{2} Q\right)_{\gamma}} \cdot \frac{(C P)_{\gamma}}{\left(A_{2} P\right)_{\gamma}}=\left(\frac{\left(C A_{1}\right)_{\gamma}}{\left(A_{2} A_{1}\right)_{\gamma}}\right)^{2} .
$$

Proof. We set $\angle A_{2} A_{1} Q=\angle P A_{1} A_{3}=\theta, \angle A_{1} Q A_{2}=\epsilon_{1}, \angle A_{1} Q A_{3}=\epsilon_{2}, \angle A_{1} P A_{2}=$ $\lambda_{1}, \angle A_{1} P A_{3}=\lambda_{2}$ (See Figure 5).

If we use the gyrosines theorem in the triangles $A_{1} A_{2} Q, A_{1} A_{3} Q, A_{1} A_{3} P, A_{1} A_{2} P$ respectively (See Theorem 1.1), then

$$
\begin{gather*}
\frac{\sin \theta}{\left(A_{2} Q\right)_{\gamma}}=\frac{\sin \epsilon_{1}}{\left(A_{2} A_{1}\right)_{\gamma}}, \tag{7}\\
\frac{\sin \left(A_{1}-\theta\right)}{\left(A_{3} Q\right)_{\gamma}}=\frac{\sin \epsilon_{2}}{\left(A_{3} A_{1}\right)_{\gamma}}, \tag{8}\\
\frac{\sin \theta}{\left(A_{3} P\right)_{\gamma}}=\frac{\sin \lambda_{2}}{\left(A_{3} A_{1}\right)_{\gamma}}, \tag{9}\\
\frac{\sin \left(A_{1}-\theta\right)}{\left(A_{2} P\right)_{\gamma}}=\frac{\sin \lambda_{1}}{\left(A_{2} A_{1}\right)_{\gamma}} . \tag{10}
\end{gather*}
$$

If ratios the equations (7) and (8) among themselves, respectively, and because $\sin (\pi-\theta)=$ $\sin \theta$, then

$$
\begin{equation*}
\frac{\sin \theta}{\sin \left(A_{1}-\theta\right)} \cdot \frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{2} Q\right)_{\gamma}}=\frac{\left(A_{3} A_{1}\right)_{\gamma}}{\left(A_{2} A_{1}\right)_{\gamma}} . \tag{11}
\end{equation*}
$$

If ratios the equations (9) and (10) among themselves, respectively, then

$$
\begin{equation*}
\frac{\sin \theta}{\sin \left(A_{1}-\theta\right)} \cdot \frac{\left(A_{2} P\right)_{\gamma}}{\left(A_{3} P\right)_{\gamma}}=\frac{\left(A_{2} A_{1}\right)_{\gamma}}{\left(A_{3} A_{1}\right)_{\gamma}} . \tag{12}
\end{equation*}
$$

If ratios the equations (11) and (12) among themselves, respectively, then

$$
\begin{equation*}
\frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{2} Q\right)_{\gamma}} \cdot \frac{\left(A_{3} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}}=\left(\frac{\left(A_{3} A_{1}\right)_{\gamma}}{\left(A_{2} A_{1}\right)_{\gamma}}\right)^{2} \tag{13}
\end{equation*}
$$

Corollary 2.5 If the gyroline $A_{1} P$ is a gyrosymmedian of a gyrotriangle $A_{1} A_{2} A_{3}$, and the point P is on the gyroside $A_{2} A_{3}$, then

$$
\begin{equation*}
\frac{\left(A_{3} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}}=\left(\frac{\left(A_{3} A_{1}\right)_{\gamma}}{\left(A_{2} A_{1}\right)_{\gamma}}\right)^{2} . \tag{14}
\end{equation*}
$$

Proof. Let $A_{1} Q$ be the gyromedian in the gyrotriangle $A_{1} A_{2} A_{3}$ (See Figure 5). If we use theorem 2.3 for the isogonals $A_{1} P$ and $A_{1} Q$, we obtain

$$
\frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{2} Q\right)_{\gamma}} \cdot \frac{\left(A_{3} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}}=\left(\frac{\left(A_{3} A_{1}\right)_{\gamma}}{\left(A_{2} A_{1}\right)_{\gamma}}\right)^{2} .
$$

Because $\left(A_{3} Q\right)_{\gamma}=\left(A_{2} Q\right)_{\gamma}$, the conclusion follows.
Corollary 2.6 The gyrosymedians of a gyrotriangle are concurrent.
Proof. Let $A_{1} A_{2} A_{3}$ be a gyrotriangle, and let the gyrosymedians be $A_{1} R, A_{2} Q$ and $A_{3} P$. If we use the Corollary 2.2 we get

$$
\begin{equation*}
\frac{\left(A_{3} R\right)_{\gamma}}{\left(A_{2} R\right)_{\gamma}}=\left(\frac{\left(A_{3} A_{1}\right)_{\gamma}}{\left(A_{2} A_{1}\right)_{\gamma}}\right)^{2} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(A_{1} Q\right)_{\gamma}}{\left(A_{3} Q\right)_{\gamma}}=\left(\frac{\left(A_{1} A_{2}\right)_{\gamma}}{\left(A_{3} A_{2}\right)_{\gamma}}\right)^{2} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(A_{2} P\right)_{\gamma}}{\left(A_{1} P\right)_{\gamma}}=\left(\frac{\left(A_{2} A_{3}\right)_{\gamma}}{\left(A_{1} A_{3}\right)_{\gamma}}\right)^{2} \tag{17}
\end{equation*}
$$

From (15), (16), and (17) we obtain

$$
\frac{\left(A_{3} R\right)_{\gamma}}{\left(A_{2} R\right)_{\gamma}} \cdot \frac{\left(A_{1} Q\right)_{\gamma}}{\left(A_{3} Q\right)_{\gamma}} \cdot \frac{\left(A_{2} P\right)_{\gamma}}{\left(A_{1} P\right)_{\gamma}}=1,
$$

and from Theorem 2.2 we get the conclusion.
Corollary 2.7 The internal angle bisectors of a gyrotriangle $A_{1} A_{2} A_{3}$ are concurrent.
Proof. Let $A_{1} A_{2} A_{3}$ be a gyrotriangle, and let the angle bisectors be $A_{1} R, A_{2} Q$ and $A_{3} P$ (See Figure 1). If we use the Theorem 1.2 we get

$$
\begin{equation*}
\frac{\left(A_{3} R\right)_{\gamma}}{\left(A_{2} R\right)_{\gamma}}=\frac{\left(A_{3} A_{1}\right)_{\gamma}}{\left(A_{2} A_{1}\right)_{\gamma}}, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(A_{1} Q\right)_{\gamma}}{\left(A_{3} Q\right)_{\gamma}}=\frac{\left(A_{1} A_{2}\right)_{\gamma}}{\left(A_{3} A_{2}\right)_{\gamma}}, \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(A_{2} P\right)_{\gamma}}{\left(A_{1} P\right)_{\gamma}}=\frac{\left(A_{2} A_{3}\right)_{\gamma}}{\left(A_{1} A_{3}\right)_{\gamma}} . \tag{20}
\end{equation*}
$$

From (18), (19), and (20) we obtain

$$
\frac{\left(A_{3} R\right)_{\gamma}}{\left(A_{2} R\right)_{\gamma}} \cdot \frac{\left(A_{1} Q\right)_{\gamma}}{\left(A_{3} Q\right)_{\gamma}} \cdot \frac{\left(A_{2} P\right)_{\gamma}}{\left(A_{1} P\right)_{\gamma}}=1
$$

The angle bisectors all lie within the gyrotriangle, so any two must meet. Thus, by the Converse of Ceva's Theorem, the internal angle bisectors $A_{1} R, A_{2} Q$ and $A_{3} P$ are concurrent.

Many of the theorems of Euclidean geometry are relatively similar form in the Poincaré model of hyperbolic geometry, Ceva's theorem and Stewart's theorem are an examples in this respect. In the Euclidean limit of large $s, s \rightarrow \infty, v_{\gamma}$ reduces to v, so the relations (*) and (13) reduces to

$$
\frac{A_{1} P}{A_{2} P} \cdot \frac{A_{2} R}{A_{3} R} \cdot \frac{A_{3} Q}{A_{1} Q}=1
$$

and

$$
\frac{A_{3} Q}{A_{2} Q} \cdot \frac{A_{3} P}{A_{2} P}=\left(\frac{A_{3} A_{1}}{A_{2} A_{1}}\right)^{2}
$$

in euclidian geometry.

References

[1] Barbu, C., Pişcoran L., The Hyperbolic Gülicher Theorem in the Poincaré Disc Model of Hyperbolic Geometry (to appear)
[2] Coolidge, J., The Elements of Non-Euclidean Geometry, Oxford, Clarendon Press, 1909.
[3] Court, N.A., A Second Course in Plane Geometry for Colleges New York, Johnson Publishing Company, 1925, p. 127
[4] Goodman, S., Compass and straightedge in the Poincaré disk, American Mathematical Monthly 108 (2001), 38-49.
[5] Grinberg, D., A new proof of the Ceva Theorem, http://www.cip.ifi.lmu.de/~ grinberg/geometry2.html
[6] Honsberg, R., Episodes in Nineteenth and Twentieth Century Euclidean Geometry, The Mathematical Association of America, 1995, p.137.
[7] Johnson, R.A., Advanced Euclidean Geometry, New York, Dover Publications, Inc. 1962, p. 145
[8] Smarandache, F., Eight Solved and Eight Open Problems in Elementary Geometry arXiv.org.
[9] Stahl, S., The Poincaré half plane a gateway to modern geometry, Jones and Barlett Publishers, Boston, 1993.
[10] Ungar, A.A., Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, Hackensack, NJ:World Scientific Publishing Co.Pte. Ltd., 2008.
[11] Ungar, A.A., Analytic Hyperbolic Geometry Mathematical Foundations and Applications, Hackensack, NJ:World Scientific Publishing Co.Pte. Ltd., 2005.

ACAM Vol. 19 (2010) no. 1

