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THE HYPERBOLIC STEWART THEOREM IN THE EINSTEIN
RELATIVISTIC VELOCITY MODEL OF HYPERBOLIC

GEOMETRY

CĂTĂLIN BARBU

Abstract. In this study, we present a proof of the hyperbolic Stewart theorem

in the Einstein relativistic velocity model of hyperbolic geometry.

1. Introduction

Hyperbolic geometry appeared in the first half of the 19th century as an attempt
to understand Euclid’s axiomatic basis of geometry. It is also known as a type of non-
Euclidean geometry, being in many respects similar to euclidean geometry. Hyperbolic
geometry includes similar concepts as distance and angle. Both these geometries have
many results in common but many are different. Several useful models of hyperbolic
geometry are studied in the literature as, for instance, the Poincaré disc and ball
models, the Poincaré half-plane model, and the Beltrami-Klein disc and ball models
etc. Following [5] and [8] and earlier discoveries, the Beltrami-Klein model is also
known as the Einstein relativistic velocity model. Here, in this study, we present a
proof of the hyperbolic Stewart theorem in the Einstein relativistic velocity model of
hyperbolic geometry. The well-known Stewart theorem states that if a point D lies
between the vertices A and C of the triangle ABC, then AB2 · DC + BC2 · AD −
BD2 · AC = AC ·DC · AD ([1, p 152]). This result has a simple statement but it is
of great interest. We just mention here few different proofs given by O. Demirel [2],
W. Stothers [3], V. Boskoff [4].

Let D denote the complex unit disc in complex z - plane, i.e.

D = {z ∈ C : |z| < 1}.

The most general Möbius transformation of D is

z → eiθ
z0 + z

1 + z0z
= eiθ(z0 ⊕ z),
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which induces the Möbius addition ⊕ in D, allowing the Möbius transformation of
the disc to be viewed as a Möbius left gyrotranslation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the complex
conjugate of z0. Let Aut(D,⊕) be the automorphism group of the grupoid (D,⊕). If
we define

gyr : D ×D → Aut(D,⊕), gyr[a, b] =
a⊕ b
b⊕ a

=
1 + ab

1 + ab
,

then the gyrocommutative law a⊕ b = gyr[a, b](b⊕ a) is satisfied.

Definition 1.1. A groupoid (G,⊕) is a gyrogroup if its binary operation satisfies
the following axioms. In G there is at least one element, 0, called a left identity,
satisfying

(G1) 0⊕ a = a

for all a ∈ G. There is an element 0 ∈ G satisfying axiom (G1) such that for each
a ∈ G there is an element 	a ∈ G, called a left inverse of a, satisfying

(G2) 	 a⊕ a = 0

Moreover, for any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such that
the binary operation obeys the left gyroassociative law

(G3) a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c

The map gyr[a, b] : G→ G given by c 7→ gyr[a, b]c is an automorphism of the groupoid
(G,⊕),

(G4) gyr[a, b] ∈ Aut(G,⊕)

and the automorphism gyr[a, b] of G is called the gyroautomorphism of G generated
by a, b ∈ G. The operator gyr : G × G → Aut(G,⊕) is called the gyrator of G.
Finally, the gyroautomorphism gyr[a, b] generated by any a, b ∈ G possesses the left
loop property

(G5) gyr[a, b] = gyr[a⊕ b, b]

(see [5, p.17])
A gyrovector space (G,⊕,⊗) is a gyrocommutative gyrogroup (G,⊕) that obeys

the following axioms:
(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.
(2) G admits a scalar multiplication, ⊗, possessing the following properties. For

all real numbers r, r1, r2 ∈ R and all points a ∈G:
(G1) 1⊗ a = a
(G2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a
(G3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a)
(G4) |r|⊗a

‖r⊗a‖ = a
‖a‖
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(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1
(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of onedimensional

”vectors”
‖G‖ = {±‖a‖ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R and
a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖
(G8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖

Definition 1.2. Let G = (G,⊕,⊗) be a gyrovector space. Its gyrometric is given
by the gyrodistance function d(a,b) : G×G→ [0,∞),

d(a,b) = ‖	a⊕ b‖ = ‖b	 a‖

where d(a,b) is the gyrodistance of a to b.

(see [5, p.157])

Definition 1.3. A gyrotriangle ABC in a gyrovector space (G,⊕,⊗) is a gy-
rovector space object formed by the three points A,B,C ∈ G, called the vertices
of the gyrotriangle, and the gyrosegments AB,AC and BC, called the sides of the
gyrotriangle. These are, respectively, the sides opposite to the vertices C,B and
A. The gyrotriangle sides generate the three gyrotriangle gyroangles, α, β, and γ,

0 < α, β, γ < π, at the respective vertices A,B and C.

(see [5, p.284])

Definition 1.4. Let V be a real inner product space and let Vs be the s-ball of V ,

Vs = {v ∈V : ‖v‖ < s}

where s > 0 is an arbitrarily fixed constant. Einstein addition⊕E is a binary operation
in Vs given by the equation

u⊕Ev =
1

1 + u·v
s2

{
u+

1
γu

v+
1
s2

γu
1 + γu

(u · v)u
}

where γu = 1√
1− ‖u‖

s2

is the gamma factor in Vs, and where · and ‖·‖ are the inner

product and norm that the ball Vs inherits from its space V.

(see [5, p.88])

Theorem 1.1. (The Relativistic Law of Gyrocosines) Let ABC be a gyro-
triangle in a gyrovector space (Vs,⊕,⊗), whose vertices are the points A,B and C

of the gyroplane and whose sides are a = −B ⊕ C,b = −C ⊕ A, and c = −A ⊕ B.
Let a = ‖a‖ , b = ‖b‖ , c = ‖c‖ are the side-gyrolengths of the gyrotriangle ABC,
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and whose gyroangles α = ∠BAC, β = ∠CBA, γ = ∠ACB of the gyrotriangle ABC.
Then,

γa = γbγc(1− bscs cosα),

where γa = 1√
1−a2

s

, and as = a
s .

(see [5, p.542])

Theorem 1.2. (The Gyrotriangle Bisector Theorem). Let ABC be a gy-
rotriangle in a Einstein gyrovector space (Vs,⊕,⊗) with vertices A,B,C ∈ Vs, sides
a,b, c ∈ Vs, and side gyrolengths a, b, c ∈ (−s, s), a = 	B⊕C, b = 	C⊕A, c = 	A⊕
B, a = ‖a‖ , b = ‖b‖ , c = ‖c‖ , and let D be a point lying on side BC of the gyrotri-
angle such that AD is a bisector of gyroangle ∠BAC . Then

γ|BD| |BD|
γ|CD| |CD|

=
γ|AB| |AB|
γ|AC| |AC|

,

where γv = 1√
1− v2

s2

.

(see [6, p.151])
For further details we refer to the recent book of A.Ungar [5].

2. Main results

In this sections, we present a proof of the hyperbolic Stewart theorem in the Ein-
stein relativistic velocity model of hyperbolic geometry.

Theorem 2.1. (The hyperbolic Stewart theorem). If a point D lies between
the vertices A and C of the gyrotriangle ABC, then

γ|AB| · γ|DC| · |DC|+ γ|AC| · γ|BD| · |BD| − γ|AD| · γ|DC| · γ|BD| · [|BD|+ |DC|] = 0,

where |DC| , |BD| , and |BC| noted the gyrolengths of gyrosegments DC,BD, and
BC, respectively.

Proof. If we use theorem 1.1 in the triangles ABD and BCD respectively (see Figure
1), then

cos ÂDB =
−γ|AB| + γ|BD| · γ|AD|
γ|BD| · γ|AD| · |BD|s · |AD|s

(2.1)

and

cos ÂDC =
−γ|AC| + γ|AD| · γ|DC|
γ|AD| · γ|CD| · |AD|s · |DC|s

. (2.2)

Because of cos ÂDB = − cos ÂDC, we obtain

γ|BD|·γ|CD|·γ|AD|·|DC|−γ|AB|·γ|DC|·|DC| = γ|AC|·γ|BD|·|BD|−γ|AD|·γ|BD|·γ|DC|·|BD|
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Figure 1

or

γ|AB| ·γ|DC| ·|DC|+γ|AC| ·γ|BD| ·|BD|−γ|AD| ·γ|DC| ·γ|BD| ·[|BD|+ |DC|] = 0. (2.3)

�

Corollary 2.2. (Median theorem in hyperbolic geometry). Let ABC be a
gyrotriangle, and D is a gyromidpoint of the gyrosegment BC. Then,

γ|AD| =
γ|AB| + γ|AC|

2 · γ|DC|
.

Proof. We have
|BD| = |DC| (2.4)

and
γ|BD| = γ|DC| (2.5)

If we use theorem 2.1 and relations (2.4) and (2.5) we get

γ|AD| =
γ|AB| + γ|AC|

2 · γ|DC|
. (2.6)

�

Corollary 2.3. (The gamma factor of an angle bisector). Let ABC be a
gyrotriangle, and let D be a point lying on side BC of the gyrotriangle such that AD
is a bisector of gyroangle ∠BAC. Then

γ|AD| =
γ|AB| · |DC|

γ|BD| · [|BD|+ |DC|]
·
(

1 +
|AB|
|AC|

)
.

Proof. If we use theorem 2.1 in the triangles ABC, then

γ|AB| ·γ|DC| ·|DC|+γ|AC| ·γ|BD| ·|BD|−γ|AD| ·γ|DC| ·γ|BD| ·[|BD|+ |DC|] = 0. (2.7)

If we use the gyrotriangle bisector theorem, we have

γ|BD| |BD|
γ|CD| |CD|

=
γ|AB| |AB|
γ|AC| |AC|

. (2.8)
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From (2.7) and (2.8) we get

γ|AD| =
γ|AB| · |DC|

γ|BD| · [|BD|+ |DC|]
·
(

1 +
|AB|
|AC|

)
. (2.9)

�

The Einstein relativistic velocity model is another model of hyperbolic geometry.
Many of the theorems of Euclidean geometry are relatively similar form in the Einstein
relativistic velocity model, Stewart’s theorem for gyrotriangle is an example in this
respect. We should note that in the Euclidean limit of large s, s→∞, gamma factor
γv reduces to 1, so the gyroequality (2.3) reduces to the trivial identity 0 = 0. Hence,
(2.3) has no immediate Euclidean counterpart, thus presenting a disanalogy between
hyperbolic and Euclidean geometry.
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