THE HYPERBOLIC STEWART THEOREM IN THE EINSTEIN RELATIVISTIC VELOCITY MODEL OF HYPERBOLIC GEOMETRY

CĂTĂLIN BARBU

Abstract

In this study, we present a proof of the hyperbolic Stewart theorem in the Einstein relativistic velocity model of hyperbolic geometry.

1. Introduction

Hyperbolic geometry appeared in the first half of the $19^{\text {th }}$ century as an attempt to understand Euclid's axiomatic basis of geometry. It is also known as a type of nonEuclidean geometry, being in many respects similar to euclidean geometry. Hyperbolic geometry includes similar concepts as distance and angle. Both these geometries have many results in common but many are different. Several useful models of hyperbolic geometry are studied in the literature as, for instance, the Poincaré disc and ball models, the Poincaré half-plane model, and the Beltrami-Klein disc and ball models etc. Following [5] and [8] and earlier discoveries, the Beltrami-Klein model is also known as the Einstein relativistic velocity model. Here, in this study, we present a proof of the hyperbolic Stewart theorem in the Einstein relativistic velocity model of hyperbolic geometry. The well-known Stewart theorem states that if a point D lies between the vertices A and C of the triangle $A B C$, then $A B^{2} \cdot D C+B C^{2} \cdot A D-$ $B D^{2} \cdot A C=A C \cdot D C \cdot A D([1, \mathrm{p} 152])$. This result has a simple statement but it is of great interest. We just mention here few different proofs given by O. Demirel [2], W. Stothers [3], V. Boskoff [4].

Let D denote the complex unit disc in complex z-plane, i.e.

$$
D=\{z \in \mathbb{C}:|z|<1\} .
$$

The most general Möbius transformation of D is

$$
z \rightarrow e^{i \theta} \frac{z_{0}+z}{1+\overline{z_{0}} z}=e^{i \theta}\left(z_{0} \oplus z\right)
$$

[^0]which induces the Möbius addition \oplus in D, allowing the Möbius transformation of the disc to be viewed as a Möbius left gyrotranslation
$$
z \rightarrow z_{0} \oplus z=\frac{z_{0}+z}{1+\overline{z_{0}} z}
$$
followed by a rotation. Here $\theta \in \mathbb{R}$ is a real number, $z, z_{0} \in D$, and $\overline{z_{0}}$ is the complex conjugate of z_{0}. Let $\operatorname{Aut}(D, \oplus)$ be the automorphism group of the grupoid (D, \oplus). If we define
$$
g y r: D \times D \rightarrow A u t(D, \oplus), g y r[a, b]=\frac{a \oplus b}{b \oplus a}=\frac{1+a \bar{b}}{1+\bar{a} b},
$$
then the gyrocommutative law $a \oplus b=\operatorname{gyr}[a, b](b \oplus a)$ is satisfied.
Definition 1.1. A groupoid (G, \oplus) is a gyrogroup if its binary operation satisfies the following axioms. In G there is at least one element, 0 , called a left identity, satisfying
$$
\text { (G1) } 0 \oplus a=a
$$
for all $a \in G$. There is an element $0 \in G$ satisfying axiom ($G 1$) such that for each $a \in G$ there is an element $\ominus a \in G$, called a left inverse of a, satisfying
$$
(G 2) \quad \ominus a \oplus a=0
$$

Moreover, for any $a, b, c \in G$ there exists a unique element $g y r[a, b] c \in G$ such that the binary operation obeys the left gyroassociative law

$$
(G 3) \quad a \oplus(b \oplus c)=(a \oplus b) \oplus g y r[a, b] c
$$

The map $g y r[a, b]: G \rightarrow G$ given by $c \mapsto g y r[a, b] c$ is an automorphism of the groupoid (G, \oplus),

$$
(G 4) \operatorname{gyr}[a, b] \in \operatorname{Aut}(G, \oplus)
$$

and the automorphism $\operatorname{gyr}[a, b]$ of G is called the gyroautomorphism of G generated by $a, b \in G$. The operator gyr : $G \times G \rightarrow \operatorname{Aut}(G, \oplus)$ is called the gyrator of G. Finally, the gyroautomorphism gyr $[a, b]$ generated by any $a, b \in G$ possesses the left loop property

$$
(G 5) \operatorname{gyr}[a, b]=\operatorname{gyr}[a \oplus b, b]
$$

(see [5, p.17])
A gyrovector space (G, \oplus, \otimes) is a gyrocommutative gyrogroup (G, \oplus) that obeys the following axioms:
(1) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a} \cdot \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{b}=\mathbf{a} \cdot \mathbf{b}$ for all points $\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v} \in G$.
(2) G admits a scalar multiplication, \otimes, possessing the following properties. For all real numbers $r, r_{1}, r_{2} \in \mathbb{R}$ and all points $\mathbf{a} \in G$:
(G1) $1 \otimes \mathbf{a}=\mathbf{a}$
(G2) $\left(r_{1}+r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes \mathbf{a} \oplus r_{2} \otimes \mathbf{a}$
(G3) $\left(r_{1} r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes\left(r_{2} \otimes \mathbf{a}\right)$
(G4) $\frac{r \mid \otimes \mathbf{a}}{\|r \otimes \mathbf{a}\|}=\frac{\mathbf{a}}{\|\mathbf{a}\|}$
(G5) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}](r \otimes \mathbf{a})=r \otimes \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a}$
(G6) $g y r\left[r_{1} \otimes \mathbf{v}, r_{1} \otimes \mathbf{v}\right]=1$
(3) Real vector space structure $(\|G\|, \oplus, \otimes)$ for the set $\|G\|$ of onedimensional "vectors"

$$
\|G\|=\{ \pm\|\mathbf{a}\|: \mathbf{a} \in G\} \subset \mathbb{R}
$$

with vector addition \oplus and scalar multiplication \otimes, such that for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in G$,

$$
\begin{aligned}
& (G 7) ~\|r \otimes \mathbf{a}\|=|r| \otimes\|\mathbf{a}\| \\
& (G 8)\|\mathbf{a} \oplus \mathbf{b}\| \leq\|\mathbf{a}\| \oplus\|\mathbf{b}\|
\end{aligned}
$$

Definition 1.2. Let $G=(G, \oplus, \otimes)$ be a gyrovector space. Its gyrometric is given by the gyrodistance function $d(\mathbf{a}, \mathbf{b}): G \times G \rightarrow[0, \infty)$,

$$
d(\mathbf{a}, \mathbf{b})=\|\ominus \mathbf{a} \oplus \mathbf{b}\|=\|\mathbf{b} \ominus \mathbf{a}\|
$$

where $d(\mathbf{a}, \mathbf{b})$ is the gyrodistance of \mathbf{a} to \mathbf{b}.
(see [5, p.157])
Definition 1.3. A gyrotriangle $A B C$ in a gyrovector space (G, \oplus, \otimes) is a gyrovector space object formed by the three points $A, B, C \in G$, called the vertices of the gyrotriangle, and the gyrosegments $A B, A C$ and $B C$, called the sides of the gyrotriangle. These are, respectively, the sides opposite to the vertices C, B and A. The gyrotriangle sides generate the three gyrotriangle gyroangles, α, β, and γ, $0<\alpha, \beta, \gamma<\pi$, at the respective vertices A, B and C.
(see [5, p.284])
Definition 1.4. Let V be a real inner product space and let V_{s} be the s-ball of V,

$$
V_{s}=\{\mathbf{v} \in V:\|\mathbf{v}\|<s\}
$$

where $s>0$ is an arbitrarily fixed constant. Einstein addition \oplus_{E} is a binary operation in V_{s} given by the equation

$$
\mathbf{u} \oplus_{E} \mathbf{v}=\frac{1}{1+\frac{\mathbf{u} \cdot \mathbf{v}}{s^{2}}}\left\{\mathbf{u}+\frac{1}{\gamma_{\mathbf{u}}} \mathbf{v}+\frac{1}{s^{2}} \frac{\gamma_{\mathbf{u}}}{1+\gamma_{\mathbf{u}}}(\mathbf{u} \cdot \mathbf{v}) \mathbf{u}\right\}
$$

where $\gamma_{\mathbf{u}}=\frac{1}{\sqrt{1-\frac{\|\mathbf{u}\|}{s^{2}}}}$ is the gamma factor in V_{s}, and where \cdot and $\|\cdot\|$ are the inner product and norm that the ball V_{s} inherits from its space V.
(see [5, p.88])
Theorem 1.1. (The Relativistic Law of Gyrocosines) Let $A B C$ be a gyrotriangle in a gyrovector space $\left(V_{s}, \oplus, \otimes\right)$, whose vertices are the points A, B and C of the gyroplane and whose sides are $\mathbf{a}=-B \oplus C, \mathbf{b}=-C \oplus A$, and $\mathbf{c}=-A \oplus B$. Let $a=\|\mathbf{a}\|, b=\|\mathbf{b}\|, c=\|\mathbf{c}\|$ are the side-gyrolengths of the gyrotriangle $A B C$,
and whose gyroangles $\alpha=\angle B A C, \beta=\angle C B A, \gamma=\angle A C B$ of the gyrotriangle $A B C$. Then,

$$
\gamma_{a}=\gamma_{b} \gamma_{c}\left(1-b_{s} c_{s} \cos \alpha\right),
$$

where $\gamma_{a}=\frac{1}{\sqrt{1-a_{s}^{2}}}$, and $a_{s}=\frac{a}{s}$.
(see [5, p.542])
Theorem 1.2. (The Gyrotriangle Bisector Theorem). Let $A B C$ be a gyrotriangle in a Einstein gyrovector space $\left(V_{s}, \oplus, \otimes\right)$ with vertices $A, B, C \in V_{s}$, sides $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{V}_{s}$, and side gyrolengths $a, b, c \in(-s, s), \mathbf{a}=\ominus B \oplus C, \mathbf{b}=\ominus C \oplus A, \mathbf{c}=\ominus A \oplus$ $B, a=\|\mathbf{a}\|, b=\|\mathbf{b}\|, c=\|\mathbf{c}\|$, and let D be a point lying on side $B C$ of the gyrotriangle such that $A D$ is a bisector of gyroangle $\angle B A C$. Then

$$
\frac{\gamma_{|B D|}|B D|}{\gamma_{|C D|}|C D|}=\frac{\gamma_{|A B|}|A B|}{\gamma_{|A C|}|A C|},
$$

where $\gamma_{v}=\frac{1}{\sqrt{1-\frac{v^{2}}{s^{2}}}}$.
(see [6, p.151])
For further details we refer to the recent book of A.Ungar [5].

2. Main Results

In this sections, we present a proof of the hyperbolic Stewart theorem in the Einstein relativistic velocity model of hyperbolic geometry.

Theorem 2.1. (The hyperbolic Stewart theorem). If a point D lies between the vertices A and C of the gyrotriangle $A B C$, then
$\gamma_{|A B|} \cdot \gamma_{|D C|} \cdot|D C|+\gamma_{|A C|} \cdot \gamma_{|B D|} \cdot|B D|-\gamma_{|A D|} \cdot \gamma_{|D C|} \cdot \gamma_{|B D|} \cdot[|B D|+|D C|]=0$, where $|D C|,|B D|$, and $|B C|$ noted the gyrolengths of gyrosegments $D C, B D$, and $B C$, respectively.

Proof. If we use theorem 1.1 in the triangles $A B D$ and $B C D$ respectively (see Figure 1), then

$$
\begin{equation*}
\cos \widehat{A D B}=\frac{-\gamma_{|A B|}+\gamma_{|B D|} \cdot \gamma_{|A D|}}{\gamma_{|B D|} \cdot \gamma_{|A D|} \cdot \frac{|B D|}{s} \cdot \frac{|A D|}{s}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos \widehat{A D C}=\frac{-\gamma_{|A C|}+\gamma_{|A D|} \cdot \gamma_{|D C|}}{\gamma_{|A D|} \cdot \gamma_{|C D|} \cdot \frac{|A D|}{s} \cdot \frac{|D C|}{s}} \tag{2.2}
\end{equation*}
$$

Because of $\cos \widehat{A D B}=-\cos \widehat{A D C}$, we obtain
$\gamma_{|B D|} \cdot \gamma_{|C D|} \cdot \gamma_{|A D|} \cdot|D C|-\gamma_{|A B|} \cdot \gamma_{|D C|} \cdot|D C|=\gamma_{|A C|} \cdot \gamma_{|B D|} \cdot|B D|-\gamma_{|A D|} \cdot \gamma_{|B D|} \cdot \gamma_{|D C|} \cdot|B D|$

Figure 1
or

$$
\begin{equation*}
\gamma_{|A B|} \cdot \gamma_{|D C|} \cdot|D C|+\gamma_{|A C|} \cdot \gamma_{|B D|} \cdot|B D|-\gamma_{|A D|} \cdot \gamma_{|D C|} \cdot \gamma_{|B D|} \cdot[|B D|+|D C|]=0 \tag{2.3}
\end{equation*}
$$

Corollary 2.2. (Median theorem in hyperbolic geometry). Let $A B C$ be a gyrotriangle, and D is a gyromidpoint of the gyrosegment $B C$. Then,

$$
\gamma_{|A D|}=\frac{\gamma_{|A B|}+\gamma_{|A C|}}{2 \cdot \gamma_{|D C|}} .
$$

Proof. We have

$$
\begin{equation*}
|B D|=|D C| \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{|B D|}=\gamma_{|D C|} \tag{2.5}
\end{equation*}
$$

If we use theorem 2.1 and relations (2.4) and (2.5) we get

$$
\begin{equation*}
\gamma_{|A D|}=\frac{\gamma_{|A B|}+\gamma_{|A C|}}{2 \cdot \gamma_{|D C|}} . \tag{2.6}
\end{equation*}
$$

Corollary 2.3. (The gamma factor of an angle bisector). Let $A B C$ be a gyrotriangle, and let D be a point lying on side $B C$ of the gyrotriangle such that $A D$ is a bisector of gyroangle $\angle B A C$. Then

$$
\gamma_{|A D|}=\frac{\gamma_{|A B|} \cdot|D C|}{\gamma_{|B D|} \cdot[|B D|+|D C|]} \cdot\left(1+\frac{|A B|}{|A C|}\right) .
$$

Proof. If we use theorem 2.1 in the triangles $A B C$, then

$$
\begin{equation*}
\gamma_{|A B|} \cdot \gamma_{|D C|} \cdot|D C|+\gamma_{|A C|} \cdot \gamma_{|B D|} \cdot|B D|-\gamma_{|A D|} \cdot \gamma_{|D C|} \cdot \gamma_{|B D|} \cdot[|B D|+|D C|]=0 \tag{2.7}
\end{equation*}
$$

If we use the gyrotriangle bisector theorem, we have

$$
\begin{equation*}
\frac{\gamma_{|B D|}|B D|}{\gamma_{|C D|}|C D|}=\frac{\gamma_{|A B|}|A B|}{\gamma_{|A C|}|A C|} \tag{2.8}
\end{equation*}
$$

From (2.7) and (2.8) we get

$$
\begin{equation*}
\gamma_{|A D|}=\frac{\gamma_{|A B|} \cdot|D C|}{\gamma_{|B D|} \cdot[|B D|+|D C|]} \cdot\left(1+\frac{|A B|}{|A C|}\right) . \tag{2.9}
\end{equation*}
$$

The Einstein relativistic velocity model is another model of hyperbolic geometry. Many of the theorems of Euclidean geometry are relatively similar form in the Einstein relativistic velocity model, Stewart's theorem for gyrotriangle is an example in this respect. We should note that in the Euclidean limit of large $s, s \rightarrow \infty$, gamma factor γ_{v} reduces to 1 , so the gyroequality (2.3) reduces to the trivial identity $0=0$. Hence, (2.3) has no immediate Euclidean counterpart, thus presenting a disanalogy between hyperbolic and Euclidean geometry.

Acknowledgement

The author wish to thank the referee for useful comments.

References

[1] Court, N.A., An introduction to the Modern Geometry of the Triangle and the Circle, Dover Publications, Inc., New York, 2007.
[2] Demirel, O., The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry, Commentationes Mathematicae Universitatis Carolinae, vol. 50 (2009), issue 3, pp. 359-371.
[3] Stothers, W., Geometry Pages - http://www.maths.gla.ac.uk/~wws/cabripages.
[4] Boskoff, V., Nicolescu, L., Probleme practice de geometrie, Editura Tehnică, Bucureşti, 1990, p. 9.
[5] Ungar, A.A., Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, Hackensack, NJ:World Scientific Publishing Co.Pte. Ltd., 2008.
[6] Ungar, A.A., A Gyrovector Space Approach to Hyperbolic Geometry, Morgan \& Claypool Publishers, 2009.
[7] Ungar, A.A., Analytic Hyperbolic Geometry Mathematical Foundations and Applications, Hackensack, NJ:World Scientific Publishing Co.Pte. Ltd., 2005.
[8] Ungar., A.A., Hyperbolic triangle centers: The special relativistic approach, Springer Verlag, New York, 2010.

Accepted 2 October 2010
"Vasile Alecsandri" College - Bacău, str. Iosif Cocea, nr. 12, Sc. A, Ap. 13, Romania E-mail address: kafka_mate@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 51K05, 51M10, 30F45, 20N99, 51B10.
 Key words and phrases. Hyperbolic Geometry, Hyperbolic Triangle, Einstein relativistic velocity model, Stewart Theorem, Gyrovector, Median Theorem.

