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Some hyperbolic concurrency results in the Poincaré
disc

CĂTĂLIN BARBU AND LAURIAN-IOAN PIŞCORAN

ABSTRACT. In this paper, we present a proof of some hyperbolic theorems in the Poincaré Model
of Hyperbolic Geometry.

1. INTRODUCTION

Hyperbolic geometry appeared in the first half of the 19th century as an at-
tempt to understand Euclid’s axiomatic basis of Geometry. It is also known as a
type of non-Euclidean Geometry, being in many respects similar to the Euclidean
Geometry. Hyperbolic Geometry includes similar concepts as distance and an-
gle. Both these geometries have many results in common but many are different.
Several useful models of Hyperbolic Geometry are studied in the literature as,
for instance, the Poincaré disc and ball models, the Poincaré half-plane model,
and the Beltrami-Klein disc and ball models [8] etc. Following [10] and [11] and
earlier discoveries, the Beltrami-Klein model is also known as the Einstein rela-
tivistic velocity model.

Here, in this study, we present some applications of the Ceva’s theorem in the
Poincaré disc model of hyperbolic geometry. The Euclidean version of this well-
known theorem states that if three lines from the vertices of a triangle A1A2A3

are concurrent at M, and meet the opposide sides at P, Q, R respectively, then
A1P
PA2

· A2R
RA3

· A3Q
QA1

= 1 [6]. This result has a simple statement but it is of a great in-

terest. We have just mentioned here few different proofs given by N.A.Court [3],
D.Grindberg [4], R.Honsberg [5], A.Ungar [9]. In this paper it is also presented
the hyperbolic proof of Mathieu’s theorem in the Poincaré disc model of the hy-
perbolic geometry. The classical Mathieu’s theorem states that if three lines from
the vertices of a triangle are concurrent, their isogonals are also concurrent [7].

We begin with the recall of some basic geometric notions and properties in the
Poincaré disc. Let D denote the unit disc in the complex z - plane, i.e.

D = {z ∈ C : |z| < 1}

The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),
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2 Cătălin Barbu and Laurian-Ioan Pişcoran

which induces the Möbius addition ⊕ in D, allowing the Möbius transformation
of the disc to be viewed as a Möbius left gyro-translation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the com-
plex conjugate of z0. Let Aut(D,⊕) be the automorphism group of the grupoid
(D,⊕). If we define

gyr : D × D → Aut(D,⊕), gyr[a, b] =
a ⊕ b

b ⊕ a
=

1 + ab

1 + ab
,

then it is true the gyro-commutative law

a ⊕ b = gyr[a, b](b ⊕ a).

A gyro-vector space (G,⊕,⊗) is a gyro-commutative gyro-group (G,⊕) that
obeys the following axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.

(2) G admits a scalar multiplication, ⊗, possessing the following properties.
For all real numbers r, r1, r2 ∈ R and all points a ∈G:

(G1) 1 ⊗ a = a

(G2) (r1 + r2) ⊗ a = r1 ⊗ a ⊕ r2 ⊗ a

(G3) (r1r2) ⊗ a = r1 ⊗ (r2 ⊗ a)

(G4) |r|⊗a

‖r⊗a‖ = a

‖a‖

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1

(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of one-dimensional
”vectors”

‖G‖ = {± ‖a‖ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R and
a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖
(G8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖

Theorem 1.1. (The law of gyrosines in Möbius gyrovector spaces). Let ABC be
a gyrotriangle in a Möbius gyrovector space (Vs,⊕,⊗) with vertices A, B, C ∈ Vs,

sides a,b, c ∈ Vs, and side gyrolengths a, b, c ∈ (−s, s), a = ⊖B ⊕ C, b = ⊖C ⊕ A,

c = ⊖A ⊕ B, a = ‖a‖ , b = ‖b‖ , c = ‖c‖ , and with gyroangles α, β, and γ at the

vertices A, B, and C. Then
aγ

sin α
=

bγ

sin β
=

cγ

sin γ
, where vγ = v

1− v2

s2

[9, p. 267].

Definition 1.1. The hyperbolic distance function in D is defined by the equation

d(a, b) = |a ⊖ b| =

∣

∣

∣

∣

a − b

1 − ab

∣

∣

∣

∣

.

Here, a ⊖ b = a ⊕ (−b), for a, b ∈ D.

For further details we refer to the recent book of A.Ungar [10].
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Theorem 1.2. (The Gyrotriangle Bisector Theorem). Let ABC be a gyrotriangle in a
Möbius gyrovector space (Vs,⊕,⊗) with vertices A, B, C ∈ Vs, sides a,b, c ∈ Vs, and
side gyrolengths a, b, c ∈ (−s, s), a = ⊖B ⊕ C, b = ⊖C ⊕ A, c = ⊖A ⊕ B, a = ‖a‖ ,

b = ‖b‖ , c = ‖c‖ , and let D be a point lying on side BC of the gyrotriangle so that AD

is a bisector of gyroangle ∠BAC. Then

(DB)γ

(DC)γ

=
(AB)γ

(AC)γ

,

where vγ = v

1− v2

s2

.

(See [2])

Theorem 1.3. (The Ceva’s Theorem for the Hyperbolic Gyrotriangle). If M is a
point not on any side of a gyrotriangle A1A2A3 such that A3M and A1A2 meet in P,

A2M and A3A1 in Q, and A1M and A2A3 meet in R, then

(A1P )γ

(A2P )γ

·
(A2R)γ

(A3R)γ

·
(A3Q)γ

(A1Q)γ

= 1

(See [1])

Theorem 1.4. (Converse of Ceva’s Theorem for Hyperbolic Gyrotriangle). If P lies
on the gyroline A1A2, R on A2A3, and Q on A3A1 so that

(A1P )γ

(A2P )γ

·
(A2R)γ

(A3R)γ

·
(A3Q)γ

(A1Q)γ

= 1,

and two of the gyrolines A1R, A2Q and A3P meet, then all three are concurrent.

(See [1])

2. MAIN RESULTS

In this section we prove some applications of Ceva’s theorem in the Poincaré
disc model of hyperbolic geometry

The Euclidean case of the following theorem seems to be done by Patrascu.

Theorem 2.5. Let D be a point on the gyroside BC of a gyrotriangle ABC, and let E

and F be the points lying on sides CA and AB of the gyrotriangle ABC so that DE is a
bisector of the gyroangle ∠ADC, and DF is a bisector of the gyroangle ∠ADB, then the
gyrolines AD, BE, and CF are concurrent.

Proof. The bisector theorem (See Theorem 1.2.), gives for the gyrotriangles ABD

and ACD (See Figure 1) respectively,
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(1)
(FB)γ

(FA)γ

=
(BD)γ

(AD)γ

and

(2)
(EA)γ

(EC)γ

=
(AD)γ

(CD)γ

.

Then,

(3)
(FB)γ

(FA)γ

·
(EA)γ

(EC)γ

·
(DC)γ

(DB)γ

=
(BD)γ

(AD)γ

·
(AD)γ

(CD)γ

·
(DC)γ

(DB)γ

= 1.

Because the gyrolines AD, BE, and CF all lie within the gyrotriangle, so both
must meet. Thus, by the Converse of Ceva’s Theorem, the gyrolines AD, BE,

and CF are concurrent.

Theorem 2.6. (The Ţiţeica’s Theorem for the Hyperbolic Gyrotriangle). Let A1B1C1

be the Cevian gyrotriangle of the gyropoint P with respect to the gyrotriangle ABC, and
let l be a gyroline not through any vertex of a gyrotriangle ABC so that l meets the gyro-
sides BC, CA, and AB in the points A2, B2, and C2, respectively. If the gyrolines B1C2

and BC meet in the gyropoint A3, the gyrolines C1A2 and CA meet in the gyropoint B3,

and the gyrolines A1B2 and AB meet in the gyropoint C3, then the gyrolines AA3, BB3,

and CC3 are concurrent.

Proof. If we use the Menelaus theorem in the gyrotriangle ABC (See Figure 2) for
the gyrolines A3B1C2, B3C1A2, C3A1B2, and A2B2C2, respectively, we have
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(4)
(A3C)γ

(A3B)γ

=
(B1C)γ

(B1A)γ

·
(C2A)γ

(C2B)γ

,

and

(5)
(B3A)γ

(B3C)γ

=
(C1A)γ

(C1B)γ

·
(A2B)γ

(A2C)γ

,

and

(6)
(C3B)γ

(C3A)γ

=
(A1B)γ

(A1C)γ

·
(B2C)γ

(B2A)γ

,

and

(7)
(A2B)γ

(A2C)γ

·
(B2C)γ

(B2A)γ

·
(C2A)γ

(C2B)γ

= 1.

If we use the Ceva theorem in the gyrotriangle ABC we get

(8)
(A1B)γ

(A1C)γ

·
(B1C)γ

(B1A)γ

·
(C1A)γ

(C1B)γ

= 1.

From (4), (5), (6), (7), and (8), we get

(A3C)γ

(A3B)γ

·
(B3A)γ

(B3C)γ

·
(C3B)γ

(C3A)γ

=

(9)

(

(B1C)γ

(B1A)γ

·
(C1A)γ

(C1B)γ

·
(A1B)γ

(A1C)γ

)

·

(

(C2A)γ

(C2B)γ

·
(A2B)γ

(A2C)γ

·
(B2C)γ

(B2A)γ

)

= 1.

Thus, by the Converse of Ceva’s Theorem, the gyrolines AA3, BB3, and CC3 are
concurrent.

Next, we demonstrate Mathieu’s theorem for hyperbolic triangle.
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Theorem 2.7. (Hyperbolic Mathieu’s Theorem) If three gyrolines from a gyrotriangle
ABC, and concurrent at P , meet the opposite gyrosides at P1, P2, P3 respectively, and
the gyrolines AQ1, BQ2, and CQ3 are their isogonal gyrolines, and two of the gyrolines
AQ1, BQ2, and CQ3 meet, then all three are also concurrent.

Proof. Let a, b, c denote the sidelengths in the standard order. We set ∠BAQ1 =
∠P1AC = θ, ∠BAC = α, ∠CBA = β, ∠ACB = γ, ∠AQ1B = ǫ1, ∠AQ1C =
ǫ2, ∠AP1B = λ1, ∠AP1C = λ2

If we use the Ceva’s theorem in the gyrotriangle ABC (See Theorem 1.3., Figure
3), then

(10)
(CP1)γ

(BP1)γ

·
(AP2)γ

(CP2)γ

·
(BP3)γ

(AP3)γ

= 1.

If we use the law of gyrosine in the gyrotriangles ABQ1, ACQ1, ACP1, ABP1 re-
spectively (see Theorem 1.1.), then

(11)
sin θ

(BQ1)γ

=
sin ǫ1

(AB)γ

,

(12)
sin(A − θ)

(CQ1)γ

=
sin ǫ2

(AC)γ

,

(13)
sin θ

(CP1)γ

=
sin λ2

(AC)γ

,

(14)
sin(A − θ)

(BP1)γ

=
sin λ1

(AB)γ

.

If ratios the equations (11) and (12) among themselves, respectively, and because
sin(π − θ) = sin θ, ∀x ∈ R, then

(15)
sin θ

sin(A − θ)
·
(CQ1)γ

(BQ1)γ

=
(AC)γ

(AB)γ

.

If ratios the equations (13) and (14) among themselves, respectively, then

(16)
sin θ

sin(A − θ)
·
(BP1)γ

(CP1)γ

=
(AB)γ

(AC)γ

.
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If ratios the equations (15) and (16) among themselves, respectively, then

(17)
(CQ1)γ

(BQ1)γ

·
(CP1)γ

(BP1)γ

=

(

(AC)γ

(AB)γ

)2

.

Similarly,

(18)
(AQ2)γ

(CQ2)γ

·
(AP2)γ

(CP2)γ

=

(

(AB)γ

(BC)γ

)2

,

and

(19)
(BQ3)γ

(AQ3)γ

·
(BP3)γ

(AP3)γ

=

(

(BC)γ

(AC)γ

)2

.

Multiplying the relations (17), (18), and (19), then we get

(

(BQ3)γ

(AQ3)γ

·
(AQ2)γ

(CQ2)γ

·
(CQ1)γ

(BQ1)γ

)

·

(20)

(

(CP1)γ

(BP1)γ

·
(AP2)γ

(CP2)γ

·
(BP3)γ

(AP3)γ

)

= 1.

From (10) and (20) we obtain

(21)
(BQ3)γ

(AQ3)γ

·
(AQ2)γ

(CQ2)γ

·
(CQ1)γ

(BQ1)γ

= 1,

and by Theorem 1.4. we obtain that the gyrolines AQ1, BQ2, and CQ3 are con-
current in a point Q, called the isogonal conjugate of P.

Corollary 2.1. The incenter I of a gyrotriangle is its own isogonal conjugate of I .

Definition 2.2. The symmetric of the median with respect to the internal bisector issued
from the same vertex is called symmedian.

From Mathieu’s theorem result that the symmedians of the triangle ABC are
concurrent. The point of concurrence of symmedians is Lemoine’s point of trian-
gle ABC.

Corollary 2.2. The isogonal conjugate of centroid of triangle ABC is Lemoine’s point of
triangle ABC.

Theorem 2.8. Let AA′ be a interior bisector of a gyroangle BAC of a gyrotriangle ABC,

and let D be a gyropoint on the gyroside BC. If AE is the isogonal gyroline of AD, then

(BD)γ

(DA′)γ

·
(A′E)γ

(EC)γ

=
(AB)γ

(AC)γ

Proof. We set ∠BAD = ∠EAC = α, ∠DAA′ = ∠A′AE = β, ∠BDA = θ, ∠AEC =
λ (see Figure 4).
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If we use the law of gyrosine in the gyrotriangles ABD, DAA′, AEC, AA′E re-
spectively (see Theorem 1.1.), then

(22)
sinα

(BD)γ

=
sin θ

(AB)γ

,

(23)
sin β

(DA′)γ

=
sin(π − θ)

(AA′)γ

,

(24)
sinα

(EC)γ

=
sin λ

(AC)γ

,

(25)
sinβ

(A′E)γ

=
sin(π − λ)

(AA′)γ

.

If ratios the equations (22) and (23) among themselves, respectively, and because
sin(π − θ) = sin θ, then

(26)
sinβ

sinα
·

(BD)γ

(DA′)γ

=
(AB)γ

(AA′)γ

.

If ratios the equations (24) and (25) among themselves, respectively, then

(27)
sin β

sin α
·

(EC)γ

(A′E)γ

=
(AC)γ

(AA′)γ

.

If ratios the equations (26) and (27) among themselves, respectively, then

(28)
(BD)γ

(DA′)γ

·
(A′E)γ

(EC)γ

=
(AB)γ

(AC)γ

.

Corollary 2.3. Let AA′ be a interior bisector of a gyroangle BAC of a gyrotriangle
ABC, and let D be a gyropoint on the gyroside BC. If AE is the isogonal gyroline of
AD, then

(AB)γ

(AC)γ

·
(AD)γ

(AE)γ

·
(EC)γ

(BD)γ

= 1.
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Proof. If we use the bisector theorem in the gyrotriangles DAE (see Theorem 1.2.),
then

(29)
(A′E)γ

(DA′)γ

=
(AE)γ

(AD)γ

.

If we use Theorem 2.8 and the relations 29, we get to the conclusion.

Remark 2.1. If we use the bisector theorem in the gyrotriangles DAE, then
(AB)γ

(AC)γ

=
(A′B)γ

(A′C)γ

and the relation (28) becomes

(BD)γ

(DA′)γ

·
(A′E)γ

(EC)γ

·
(A′C)γ

(A′B)γ

= 1.

Corollary 2.4. Let ABC be a isosceles gyrotriangle, and let D be a gyropoint on the
gyroside BC. If AE is the isogonal gyroline of AD, then

(AD)γ

(AE)γ

=
(BD)γ

(EC)γ

.

Proof. Because AB = AC, result that (AB)γ = (AC)γ . Now, from the relation (28)
we obtain the conclusion.

Many of the theorems of the Euclidean geometry are relatively similar form
in the Poincaré model of hyperbolic geometry, Mathieu’s theorem is an example
in this respect. In the Euclidean limit of large s, s → ∞, vγ reduces to v, so
Mathieu’s theorem for the hyperbolic triangle reduces to the Mathieu’s theorem
of the euclidian geometry.
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