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1. Introduction: 

In paper [1] are presented some hyperbolic Huygens type inequalities, such as:  
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 for all ).(0,∞∈x  In this paper we will use this inequality to generate some new inequalities in 

hyperbolic triangle. For more on topic of hyperbolic triangle inequalities see [2],[3]. 

 

2. Main Results: 

Theorem 2.1 In any hyperbolic triangle the following inequalities holds:  
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                          where 3.≥α  

Proof :  For the first inequality, we use the equality  
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for all x ∈ℝ . One obtain:  
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So, the first inequality hold. Now we will proof the second inequality from theorem 2.1   

 ≤






 +++
2

b
sinh

2

a
sinh12=bcoshacosh 22  

 






 +≤+






 +≤
2

b
cosh

2

a
cosh22

2

b
sinh

2

a
cosh2 2222  

 So, the second inequality hold. For the last inequality, let us consider the inequalities 

 






 +<
2

sinh12cosh 2 a
a  (6) 

  






 +<
2

sinh12cosh 2 b
b  (7) 

 






 +<
2

sinh12cosh 2 c
c  (8) 

        Using this three inequalities, and also the equality 
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        the  proof of this theorem is done.   
Theorem 2.2 The function xcosh  is a convex function, so, the following inequality hold:  
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Observation 2.3 From Theorem 2.1 and Theorem 2.2, one obtain:  
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                          where 3.≥α  

Corollary 2.4 In any hyperbolic triangle we have:  
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              Proof :  Using relation ,
2

sinh21=cosh 2 x
x +  for x R∈  and Theorem 2.2, one obtain: 
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and the conclusion follows.             
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Corollary 2.5 In any hyperbolic triangle is true the following inequality:  
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 Proof :  From convexity of cosh function and from triangle inequality, one obtain:  
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From this inequality and inequality (3) we get:  
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and the conclusion follows.            

            Lemma 2.6 The following inequality hold:  

   

                                     






 +++
2

b
cosh

2

a
cosh

3

2

3

4
<

b

bsinh

a

asinh 22                                             (11) 

 Proof : Using inequality (1) and (2), one obtain:  
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 Using inequalities (12) and (13), one obtain:  
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which complete the proof of the lemma 2.6. 

      Lemma 2.7 The following inequality hold:  

 






 +++++
2

c
sinh

2

b
sinh

2

a
sinh5

3

2
<

c

csinh

b

bsinh

a

asinh 222  

 

 Proof : From ineqality (2), we get:  
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and using three times inequality (12), one obtain:  
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        Lemma 2.8  The following inequality hold: 
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        Proof:  We will use the following inequalities: 
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                                          (16) 

Also, using the convexity of sinh function, one obtain:  
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From (16) and (17), we obtain the proof of corollary 2.8. 

               Corollary 2.9   In any hyperbolic triangle, hold the following inequality: 
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Proof:  Using the inequalities (15) and (4), we obtain immediately the assertion of this              

                              corollary. 

        Corollary 2.10 In any hyperbolic triangle, the following inequality hold: 
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                Proof:  Using the triangle inequality b c a+ > , we get: 2a b c a+ + > , and then      

                           
6 3

a b c a+ + > .  Taking into account that the sine function is an increasing function,                             

one obtain    sinh sinh
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         Using inequality (20) and the corollary 2.9, we get the assertion of the corollary. 
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