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INEQUALITIES WITH GUDERMANNIANS IN HYPERBOLIC TRIANGLE
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ABSTRACT. In paper [3] we presented some inequalities for hyperbolic triangles. In this
paper we will use this inequalities to obtain some new inequalities in hyperblolic triangle
using the gudermannian function.
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1. INTRODUCTION

The gudermannian function relates the circular functions and the hyperbolic functions
without using complex numbers.
The gudermannian function is defined by:

gd x =
∫ x

0

dt
cosh t

= arcsin(tanh x) = 2 arctan(ex)− 1
2

π (1)

The inverse of the gudermannian function is defined on the interval −π
2 < x < π

2 is
given by

gd −1x =
∫ x

0

dt
cos t

= ln
∣∣∣∣1 + sin x

cos x

∣∣∣∣ (2)

Some properties of gudermannian function are:

sin(gd x) = tanh x (3)

sec(gd x) = cosh x (4)

tan(gd x) = sinh x (5)

csc(gd x) = coth x (6)
For more details on gudermannian function please see [1] and [2].
Next, let us consider the expansion in Mac Laurin series of the following functions:

gd x = x− 1
3

x3 +
1
24

x5 − 61
5040

x7 + ... (7)

tan x = x +
1
3

x3 +
2
15

x5 +
17
315

x7 + ... (8)

sec x = 1 +
1
2

x2 +
5

24
x4 +

61
720

x6 + ... (9)
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In paper [1], we obtain the following results:

cosh a + cosh b ≤ 2
(

cosh2 a
2

+ cosh2 b
2

)
(10)

3 cosh
a + b + c

3
≤ cosh a + cosh b + cosh c

3
(11)

cosh c ≤ cosh2 a
2

+ cosh2 b
2

(12)

sinh a
a

+
sinh b

b
<

4
3

+
2
3

(
cosh2 a

2
+ cosh2 b

2

)
(13)

6 sinh
a + b + c

6
≤ sinh a + sinh b + sinh c (14)

In this paper we will work with this relations ((10)-(14)) and using the first terms of the
expansions (7), (8) and (9) we will obtain new inequalities for hyperbolic triangle using
the gudermannian function.

2. MAIN RESULTS

Theorem 2.1 In any hyperbolic triangle, the following inequality hold:

(gd a)2 + (gd b)2 ≤ 2
(

cosh2 a
2

+ sinh2 b
2

)
(15)

Proof. Using (4), the inequation (10) became:

sec(gd a) + sec(gd b) ≤ 2
(

cosh2 a
2

+ cosh2 b
2

)
(16)

In relation (9) if we replace x with the function gd x then one obtains:

sec(gd x) = 1 +
1
2
(gd x)2 +

5
24

(gd x)4 +
61
720

(gd x)6 + ... (17)

Using (16) and the first two terms of (17), we get:

1 +
1
2
(gd a)2 + 1 +

1
2
(gd b)2 ≤ 2

(
cosh2 a

2
+ cosh2 b

2

)
(18)

After easy computations in inequation (18) we get:

1
2
(gd a)2 +

1
2
(gd b)2 ≤ 2

(
cosh2 a

2
+ cosh2 b

2
− 1
)

And then, because cosh2 b
2 − 1 = sinh2 b

2 , one obtains the assertion of the theorem .

Theorem 2.2 In any hyperbolic triangle, the following inequality hold:(
gd

a + b + c
3

)2

≤ 2(cosh a + cosh b + cosh c)− 18
9

(19)

12



Inequalities with gudermannians in hyperbolic triangle

Proof. Using (4), the inequation (11) became:(
sec
(

gd
a + b + c

3

))
≤ cosh a + cosh b + cosh c

9
(20)

Using first two terms of (17) one obtains:

1 +
1
2

(
gd

a + b + c
3

)2

≤ cosh a + cosh b + cosh c
9

(21)

After easy computations in inequation (21) we obtains:

1
2

(
gd

a + b + c
3

)2

≤ cosh a + cosh b + cosh c
9

− 1 (22)

Multiplying relation (22) with 2, one obtains the assertion of the theorem .

Theorem 2.3 In any hyperbolic triangle, the following inequality hold:

(gd c)2 ≤ 2
(

cosh2 a
2

+ sinh2 b
2

)
(23)

Proof. Using (4), the inequation (12) became:

sec(gd c) ≤ cosh2 a
2

+ cosh2 b
2

(24)

Taking first two terms of (17) and replacing in (24), one obtains:

1 +
1
2
(gd c)2 ≤ cosh2 a

2
+ cosh2 b

2
(25)

We know that cosh2 b
2 − 1 = sinh2 b

2 .
Using this and also after easy computations one obtains the inequality (23) and in this
way the proof of theorem is done.

Theorem 2.4 In any hyperbolic triangle, the following inequality hold:

gd a
a

+
gd b

b
+

(gd a)3

3a
+

(gd b)3

3b
≤ 4

3
+

2
3

(
cosh2 a

2
+ cosh2 b

2

)
(26)

Proof. Using (5), the inequation (13) became:

tan(gd a)
a

+
tan(gdb)

b
<

4
3

+
2
3

(
cosh2 a

2
+ cosh2 b

2

)
(27)

Using the first two terms of the expansion in Mac Laurin functions

tan (gd x) = gd x +
1
3

(gd x)3 +
2
15

(gd x)5 +
17
315

(gd x)7 + ... (28)

and replacing in (27), one obtains:

gd a
a

+
gd b

b
+

(gd a)3

3a
+

(gd b)3

3b
≤ 4

3
+

2
3

(
cosh2 a

2
+ cosh2 b

2

)
(29)

After easy computation in (28), we obtains the inequality (26), so the theorem is proved.
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Theorem 2.5 In any hyperbolic triangle, the following inequality hold:

6
(

gd
a + b + c

6

)
+ 2

(
gd

a + b + c
6

)3

≤ sinh a + sinh b + sinh c (30)

Proof. Using (14) and (28), we get:

6

((
gd

a + b + c
6

)
+

1
3

(
gd

a + b + c
6

)3
)
≤ sinh a + sinh b + sinh c (31)

After easy computation in (31) we get the assertion of the theorem.
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