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K-BÉZIER TYPE CURVES GENERATED BY A KING TYPE OPERATOR

PIŞCORAN LAURIAN-IOAN, BARBU CĂTĂLIN AND LAURAN MONICA

ABSTRACT. The King type operators were introduced by J.P.King in paper ([2]) in 2003.
The King type operators generalized the classical Bernstein operators. A special King
type operator was defined in paper ([1]). In this paper, we study a new class of Bézier
curves generated by the polynomials used in construction of the King type operator used
in paper ([2]).
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1. INTRODUCTION

First, let’s recall some classical results from paper ([1]):
Let m0 ∈ N and m0 > 2. For the function f : [0, 1] → R, in paper ([1]), is defined the
sequence of operators (B∗

m f )m≥m0
, by:

(B∗
m f ) (x) =

(m − 1)x

mx − 1

(

1 − 1

m

)−m m

∑
k=0

(

m

k

)

(1 − x)m−k

(

x − 1

m

)k

f

(

k

m

)

for any m ≥ m0, and any x ∈
[

1
m0−1 , 1

]

. For fixed m0, from m ≥ m0, it results that

m > m0 − 1. The base polynomials for this operator are (for more details, please see [1]):

ϕm,k(x) =
(m − 1)x

mx − 1

(

1 − 1

m

)−m (m

k

)

(1 − x)m−k

(

x − 1

m

)k

(1.1)

If m ∈ N, m ≥ m0, then the operators B∗
m are linear and positive.

Lemma 1.1. ([1]) The identities:

(B∗
me0) (x) =

(m − 1)x

mx − 1

(B∗
me1) (x) = x

(B∗
me0) (x) = x2

holds, for any m ∈ N, m ≥ m0 and x ∈
[

1
m0−1 , 1

]

.

More general, the King type operators, introduced by J.P.King in paper [2], have the
following form:

Vn( f ; x) =
m

∑
k=0

(

m

k

)

(rm(x))k (1 − rm(x))m−k f
(m

k

)

(1.2)
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where, rm : [0, 1] → [0, 1], and

rm(x) =

{

x2, if m = 1

− 1
2(m−1)

+
√

m
m−1 x2 + 1

4(m−1)2 , if m = 2, 3, ...
(1.3)

Polynomials in Bernstein form were first used by Bernstein for the proof of the Stone -
Weierstrass approximation theorem. With the advent of computer graphics, Bernstein
polynomials, restricted to the interval x ∈ [0, 1], became important in the form of Bézier
curves. The construction of a Bézier curve is based on the classical Bernstein polynomials

pm,k(t) = (m
k )(1 − t)m−ktk, k = 0, 1, 2, ..., m and have the following form:

B(t) =
m

∑
k=0

(

m

k

)

(1 − t)m−ktkPk,

where Pk, k = 0, 1, 2, ..., m are the control points of the curve.
The cubic Bézier curve is obtained when we take m = 3, and has the following form:

B(t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2 + t3P3

The quadratic Bézier curve is obtained when we take m = 2, and has the following form:

B(t) = (1 − t)2P0 + 2t(1 − t)P1 + t2P2

Definition 1.2. The convex hull of the set of points X = {x0, x1, ..., xn} is defined to be the
set:

CH(X) =

{

a0x0 + ... + anxn|
n

∑
i=1

ai = 1, ai ≥ 0

}

Some others important properties of the classical Bézier curves are:

• Geometry Invariance Property: Partition of unity property of the Bernstein polyno-
mials, assures the invariance of the shape of the Bézier curves under translations
and rotations of its control points.

• End Points Geometric Property: The first and the last control points are on the curve.
The curve is tangent to the control polygon at the end points.

• Variation Diminishing Property in 2 D: The number of intersections of a straight
line with a planar Bézier curve is no greater than the number of intersections of
the line with the control polygon.

2. MAIN RESULT

Definition 2.1. A K-Bézier curve can be defined in the following way:

Bk(x) =
m

∑
k=0

rm(x)Pk; m ≥ 2

Here, Pk with k = 0, 1, ..., m represent the control points of the curve and rm(x) are the
King type polynomials introduced in (1.3).

Theorem 2.2. (convex hull property of the K-Bézier curves) Every point of the K-Bézier
curve is in the interior of convex hull defined by the control point of the curve.
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Proof. We know that the convex hull of a set of points X, can be write as a set

CH(X) =

{

a0x0 + ... + anxn|
n

∑
i=1

ai = 1, ai ≥ 0

}

.

For Bernstein polynomials, bk,m(t), a key property was (the partition of unity):

m

∑
k=0

bk,m(t) = 1.

For ours K-Bézier curves, we have a King type operator, which generalized the classical
Bernstein polynomials and also preserve this key property. So, we have

m

∑
k=0

rm(t) = 1.

Using this and the Definition 1.2, one obtains the assertion of the theorem.
�

Theorem 2.3. The following inequality BK2
(t) ≤ B2(t) hold for t ∈ [0, 1] and for the same

control points of the curves, where BK2
(t) represent the quadratic K-Bézier curve and

B2(t) represent the classical quadratic Bézier curve.

Proof. The classical quadratic Bézier curve is:

B2(t) =
2

∑
k=0

(

2

k

)

(1 − t)2−ktk = (1 − t)2P0 + 2t(1 − t)P1 + t2P2 (2.1)

The quadratic K-Bézier curve obtained for m = 2, for the same control points, is:

BK2
(t) =

(

3 −
√

8t2 + 1

2

)2

P0 + 2

(√
8t2 + 1 − 1

2

)(

3 −
√

8t2 + 1

2

)

P1 +

(√
8t2 + 1 − 1

2

)2

P2

(2.2)
Using (2.1) and (2.2) and because t ∈ [0, 1], one obtains the assertion of the theorem.

�

Example 2.4. Let us consider the following control points: P0(1, 1); P1(4, 4) and P2(7, 1).
After easy computations, one obtains:
– For the classical Bézier curve, the following parametric equation:

{

x(t) = 6t + 1

y(t) = −6t2 − 6t + 1

– For the same control points, we get for the quadratic K-Bézier curve:






x(t) = 1 + 6
(

−1+
√

8t2+1
2

)2

y(t) = 1 + 6
(

3−
√

8t2+1
2

) (

−1+
√

8t2+1
2

)

Next, we plot the graphs for this quadratic Bézier type curves. The graph of classical
quadratic Bézier curve is plotted with red and the graph of quadratic K-Bézier curve is
plotted with yellow. In this graph we see how close this two curves are, for the same
control points. This result confirm the assertion of theorem 2.3.
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Example 2.5. Let us now, consider a Bézier cubic curve and K-Bézier cubic curve, gener-
ated by the following control points: P0(1, 1); P1(4, 5); P2(6, 4) and P3(8, 0).
After easy computations, one obtains:
– For the classical cubic Bézier curve, the following parametric equation:

{

x(t) = t3 − 3t2 + 9t + 1

y(t) = 2t3 − 15t2 + 12t + 1

– For the same control points, we get for the cubic K-Bézier curve:

{

x(t) = − 27
16 +

43
16

√
24t2 + 1 − 45

8 t2 + 3
8 t2

√
24t2 + 1

y(t) = − 43
4 + 47

4

√
24t2 + 1 − 297

4 t2 + 21
4 t2

√
24t2 + 1

Next, we plot the graphs for this cubic Bézier type curves. The graph of classical cubic
Bézier curve is plotted with red and the graph of quadratic K-Bézier curve is plotted
with yellow. Also, we can remark how close this two curves are, for the same control
points.
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Remark 2.6. For the King type operator (polynomials) obtained in paper [1], after easy
computations, one obtains:

m

∑
k=0

ϕm,k(t) 6= 1

which means that we can not preserve the classical properties of Bézier curves espe-
cially the geometric invariance property. For the classical King operators (polynomials)
described in (1.3) this important property of Bézier curves is preserved.
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[4] J. Roulier, Bézier curves of positive curvature, Computer Aided Geometric Design 5 (1),(1988), pp.59–70.

TECHNICAL UNIVERSITY OF CLUJ NAPOCA

NORTH UNIVERSITY OF BAIA MARE

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

VICTORIEI 76, 430122 BAIA MARE, ROMANIA

E-mail address: plaurian@yahoo.com
E-mail address: lauranmonica@yahoo.com

”VASILE ALECSANDRI” NATIONAL COLLEGE
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