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Smarandache’s Minimum Theorem in the Einstein Relativistic Velocity Model
of Hyperbolic Geometry
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In this note, we present a proof to the Smarandache’s Minimum Theorem in the Einstein
Relativistic Velocity Model of Hyperbolic Geometry.

1 Introduction

Hyperbolic Geometry appeared in the first half of the 19th

century as an attempt to understand Euclid’s axiomatic basis
of Geometry. It is also known as a type of non-Euclidean Ge-
ometry, being in many respects similar to Euclidean Geom-
etry. Hyperbolic Geometry includes similar concepts as dis-
tance and angle. Both these geometries have many results in
common but many are different. There are known many mod-
els for Hyperbolic Geometry, such as: Poincaré disc model,
Poincaré half-plane, Klein model, Einstein relativistic veloc-
ity model, etc. Here, in this study, we give hyperbolic version
of Smarandache minimum theorem in the Einstein relativis-
tic velocity model of hyperbolic geometry. The well-known
Smarandache minimum theorem states that if ABC is a tri-
angle and AA′, BB′, CC ′ are concurrent cevians at P , then

PA
PA′ · PB

PB′ · PC
PC′ ≥ 8

and

PA
PA′ + PB

PB′ + PC
PC′ ≥ 6

(see [1]).
Let D denote the complex unit disc in complex z-plane,

i.e.
D = {z ∈ C : |z| < 1}.

The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the
Möbius transformation of the disc to be viewed as a Möbius
left gyrotranslation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈
D, and z0 is the complex conjugate of z0. Let Aut(D,⊕) be
the automorphism group of the grupoid (D,⊕). If we define

gyr : D ×D → Aut(D,⊕), gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then is true gyrocommutative law

a⊕ b = gyr[a, b](b⊕ a).

A gyrovector space (G,⊕,⊗) is a gyrocommutative gy-
rogroup (G,⊕) that obeys the following axioms:
(1) gyr[u,v]a·gyr[u,v]b = a · b for all points
a,b,u,v ∈G.
(2) G admits a scalar multiplication, ⊗, possessing the fol-
lowing properties. For all real numbers r, r1, r2 ∈ R and all
points a ∈G:

(G1) 1⊗ a = a
(G2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a
(G3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a)
(G4) |r|⊗a

‖r⊗a‖ = a
‖a‖

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1

(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖
of onedimensional “vectors”

‖G‖ = {±‖a‖ : a ∈ G} ⊂ R
with vector addition ⊕ and scalar multiplication ⊗, such that
for all r ∈ R and a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖
(G8) ‖a⊕ b‖ 6 ‖a‖ ⊕ ‖b‖

Theorem 1. (Ceva’s theorem for hyperbolic triangles). If
M is a point not on any side of an gyrotriangle ABC in a
gyrovector space (Vs,⊕,⊗), such that AM and BC meet in
A′, BM and CA meet in B′, and CM and AB meet in C ′,
then

γ|AC′| |AC ′|
γ|BC′| |BC ′| ·

γ|BA′| |BA′|
γ|CA′| |CA′| ·

γ|CB′| |CB′|
γ|AB′| |AB′| = 1,

where γv = 1q
1− ‖v‖2

s2

.

(See [2, p. 564].) For further details we refer to the recent
book of A.Ungar [3].

Theorem 2. (Van Aubel’s theorem in hyperbolic geometry).
If the point P does lie on any side of the hyperbolic triangle
ABC, and BC meets AP in D, CA meets BP in E, and
AB meets CP in F , then

γ|AP | |AP |
γ|PD| |PD| =

γ|BC| |BC|
2

(
γ|AE| |AE|
γ|EC| |EC| ·

1
γ|BD| |BD|

)
+

γ|BC| |BC|
2

(
γ|FA| |FA|
γ|FB| |FB| ·

1
γ|CD| |CD|

)
.

(See [4].)
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2 Main result

In this section, we prove Smarandache’s minimum theorem
in the Einstein relativistic velocity model of hyperbolic ge-
ometry.

Theorem 3. If ABC is a gyrotriangle and AA′, BB′, CC ′

are concurrent cevians at P , then

γ|AP | |AP |
γ|PA′| |PA′| ·

γ|BP | |BP |
γ|PB′| |PB′| ·

γ|CP | |CP |
γ|PC′| |PC ′| > 1,

and

γ|AP | |AP |
γ|PA′| |PA′| +

γ|BP | |BP |
γ|PB′| |PB′| +

γ|CP | |CP |
γ|PC′| |PC ′| > 3.

Proof. We set

|A′C| = a1, |BA′| = a2, |B′A| = b1,

|B′C| = b2, |C ′B| = c1, |C ′A| = c2,

γ|AP | |AP |
γ|PA′| |PA′| ·

γ|BP | |BP |
γ|PB′| |PB′| ·

γ|CP | |CP |
γ|PC′| |PC ′| = P,

γ|AP | |AP |
γ|PA′| |PA′| +

γ|BP | |BP |
γ|PB′| |PB′| +

γ|CP | |CP |
γ|PC′| |PC ′| = S.

If we use the Van Aubel’s theorem in the gyrotriangle ABC
(See Theorem 2), then

γ|AP ||AP |
γ|P A′||PA′| = γ|BC||BC|

2

(
γ|AB′||AB′|
γ|CB′||CB′| · 1

γ|BA′||BA′|

)

+γ|BC||BC|
2

(
γ|AC′||AC′|
γ|BC′||BC′| · 1

γ|CA′||CA′|

)

=
γaa

2

[
γb1b1

γb2b2
· 1
γa2a2

+
γc2c2

γc1c1
· 1
γa1a1

]
, (1)

and
γ|BP ||BP |

γ|P B′||PB′| = γ|CA||CA|
2

(
γ|BC′||BC′|
γ|AC′||AC′| · 1

γ|CB′||CB′|

)
+

γ|CA||CA|
2

(
γ|BA′||BA′|
γ|CA′||CA′| · 1

γ|AB′||AB′|

)

=
γbb

2

[
γc1c1

γc2c2
· 1
γb2b2

+
γa2a2

γa1a1
· 1
γb1b1

]
, (2)

and
γ|CP ||CP |

γ|P C′||PC′| = γ|AB||AB|
2

(
γ|CA′||CA′|
γ|BA′||BA′| · 1

γ|AC′||AC′|

)
+

γ|AB||AB|
2

(
γ|CB′||CB′|
γ|AB′||AB′| · 1

γ|BC′||BC′|

)

=
γcc

2

(
γa1a1

γa2a2
· 1
γc2c2

+
γb2b2

γb1b1
· 1
γc1c1

)
. (3)

If we use the Ceva’s theorem in the gyrotriangle ABC (See
Theorem 1), we have

γ|CA′| |CA′|
γ|BA′| |BA′| ·

γ|AB′| |AB′|
γ|CB′| |CB′| ·

γ|BC′| |BC ′|
γ|AC′| |AC ′| =

γa1a1

γa2a2
· γb1b1

γb2b2
· γc1c1

γc2c2
= 1. (4)

From (1) and (4), we have

γ|AP | |AP |
γ|PA′| |PA′| =

γaa

2

(
γb1b1γc2c2

γa2a2γb2b2γc2c2

)
+

γaa

2

(
γb1b1γc2c2

γa1a1γb1b1γc1c1

)
=

γaa

2
· 2γb1b1γc2c2

γa2a2γb2b2γc2c2

=
γaaγb1b1γc2c2

γa2a2γb2b2γc2c2
. (5)

Similary we obtain that

γ|BP | |BP |
γ|PB′| |PB′| =

γbbγc1c1γa2a2

γa2a2γb2b2γc2c2
, (6)

and
γ|CP | |CP |
γ|PC′| |PC ′| =

γccγa1a1γb2b2

γa2a2γb2b2γc2c2
. (7)

From the relations (5), (6) and (7) we get

P =
γaaγb1b1γc2c2 · γbbγc1c1γa2a2 · γccγa1a1γb2b2

(γa2a2γb2b2γc2c2)
3 =

=
γaaγbbγcc

γa2a2γb2b2γc2c2
(8)

and

S =
γaaγb1b1γc2c2 + γbbγc1c1γa2a2 + γccγa1a1γb2b2

γa2a2γb2b2γc2c2
.

(9)
Because γa > γa2 , γb > γb2 , and γc > γc2 result

γaγbγc > γa2γb2γc2 . (10)

Therefore
γaaγbbγcc

γa2a2γb2b2γc2c2
> 1. (11)
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From the relations (8) and (11), we obtain that P > 1. If
we use the inequality of arithmetic and geometric means, we
obtain

S > 3 3

√
γaaγb1b1γc2c2 · γbbγc1c1γa2a2 · γccγa1a1γb2b2

(γa2a2γb2b2γc2c2)
3 =

= 3 3

√
γaaγbbγcc

γa2a2γb2b2γc2c2
. (12)

From the relations (11) and (12), we obtain that S > 3.

3 Conclusion

The special theory of relativity as was originally formulated
by Einstein in 1905, [8], to explain the massive experimental
evidence against ether as the medium for propagating elec-
tromagnetic waves, and Varičak in 1908 discovered the con-
nection between special theory of relativity and hyperbolic
geometry, [9]. The Einstein relativistic velocity model is an-
other model of hyperbolic geometry. Many of the theorems
of Euclidean geometry are relatively similar form in the Ein-
stein relativistic velocity model, Smarandache minimum the-
orem is an example in this respect. In the Euclidean limit of
large s, s → ∞, gamma factor γv reduces to 1, so that the
gyroinequalities (11) and (12) reduces to the

PA

PA′
· PB

PB′ ·
PC

PC ′
> 1,

and
PA

PA′
+

PB

PB′ +
PC

PC ′
> 3,

in Euclidean geometry. We observe that the previous inequal-
ities are “weaker” than the inequalities of Smarandache’s the-
orem of minimum.
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70 Cătălin Barbu. Smarandache’s Minimum Theorem in the Einstein Relativistic Velocity Model of Hyperbolic Geometry


