A GEOMETRIC WAY TO GENERATE BLUNDON TYPE INEQUALITIES

DORIN ANDRICA, CĂTĂLIN BARBU AND NICUŞOR MINCULETE

Abstract

We present a geometric way to generate Blundon type inequalities. Theorem 3.1 gives the formula for $\cos \widehat{P O Q}$ in terms of the barycentric coordinates of the points P and Q with respect to a given triangle. This formula implies Blundon type inequalities generated by the points P and Q. Some applications are given in the last section by choosing special points P and Q.

2000 Mathematics Subject Classification: 26D05; 26D15; 51N35 Keywords: Blundon's inequalities; dual Blundon's inequalities; barycentric coordinates.

1. Introduction

Consider O the circumcenter, I the incenter, G the centroid, N the Nagel point, s the semiperimeter, R the circumradius, and r the inradius of triangle $A B C$.

Blundon's inequalities express the necessary and sufficient conditions for the existence of a triangle with elements s, R and r :
$2 R^{2}+10 R r-r^{2}-2(R-2 r) \sqrt{R^{2}-2 R r} \leq s^{2} \leq 2 R^{2}+10 R r-r^{2}+2(R-2 r) \sqrt{R^{2}-2 R r}$.
Clearly these two inequalities can be written in the following equivalent form

$$
\begin{equation*}
\left|s^{2}-2 R^{2}-10 R r+r^{2}\right| \leq 2(R-2 r) \sqrt{R^{2}-2 R r}, \tag{2}
\end{equation*}
$$

and in many references this relation is called the fundamental inequality of triangle $A B C$.

The standard proof is an algebraic one, it was first time given by W.J.Blundon [5] and it is based on the characterization of cubic equations with the roots the length sides of a triangle. For more details we refer to the monograph of D. Mitrinović, J. Pečarić, V. Volenec [16], and to the papers of C.Niculescu [17],[18]. R.A.Satnoianu [20], and S.Wu [22] have obtained some improvements of this important inequality.

The following result was obtained by D.Andrica and C.Barbu in the paper [3] and it contains a simple geometric proof of (1). Assume that the triangle $A B C$ is not equilateral. The following relation holds :

$$
\begin{equation*}
\cos \widehat{I O N}=\frac{2 R^{2}+10 R r-r^{2}-s^{2}}{2(R-2 r) \sqrt{R^{2}-2 R r}} \tag{3}
\end{equation*}
$$

If we have $R=2 r$, then the triangle must be equilateral and we have equality in (1) and (2). If we assume that $R-2 r \neq 0$, then inequalities (1) are direct consequences of the fact that $-1 \leq \cos \widehat{I O N} \leq 1$.

In this geometric argument the main idea is to consider the points O, I and N, and then to get the formula (3). It is a natural question to see what is a similar formula when we kip the circumcenter O and we replace the points I and N by other two points P and Q. In this way we obtain Blundon type inequalities generated by the points P and Q. Section 2 contains the basic facts about the main ingredient helping us to do all the computations, that is the barycentric coordinates. In Section 3 we present the analogous formula to (3), for the triangle $P O Q$, and the we derive the Blundon type inequalities generated in this way. The last section contains some applications of the results in Section 3 as follows: the classical Blundon's inequalities, the dual Blundon's inequalities obtained in the paper [3], the Blundon's inequalities generated by two Cevian points of rank $(k ; l ; m)$.

2. Some basic results about barycentric coordinates

Let P be a point situated in the plane of the triangle $A B C$. The Cevian triangle $D E F$ is defined by the intersection of the Cevian lines though the point P and the sides $B C, C A, A B$ of triangle. If the point P has barycentric coordinates $t_{1}: t_{2}: t_{3}$, then the vertices of the Cevian triangle $D E F$ have barycentric coordinates given by: $D\left(0: t_{2}: t_{3}\right), E\left(t_{1}: 0: t_{3}\right)$ and $F\left(t_{1}: t_{2}: 0\right)$. The barycentric coordinates were introduced in 1827 by Möbius (see [10]). The using of barycentric coordinates defines a distinct part of Geometry called Barycentric Geometry. More details can be found in the monographs of C. Bradley [10], C. Coandă[11], C. Coşniţă [12], C. Kimberling [14], and in the papers of O. Bottema [9], J. Scott [21], and P. Yiu [23].

It is well-known $([11],[12])$ that for every point M in the plane of triangle $A B C$, then the following relation holds:

$$
\begin{equation*}
\left(t_{1}+t_{2}+t_{3}\right) \overrightarrow{M P}=t_{1} \overrightarrow{M A}+t_{2} \overrightarrow{M B}+t_{3} \overrightarrow{M C} \tag{4}
\end{equation*}
$$

In the particular case when $M \equiv P$, we obtain

$$
t_{1} \overrightarrow{P A}+t_{2} \overrightarrow{P B}+t_{3} \overrightarrow{P C}=\overrightarrow{0}
$$

This last relation shows that the point P is the barycenter of the system $\{A, B, C\}$ with the weights $\left\{t_{1}, t_{2}, t_{3}\right\}$. The following well-known result is very useful in computing distances from the point M to the barycenter P of the system $\{A, B, C\}$ with the weights $\left\{t_{1}, t_{2}, t_{3}\right\}$.

Theorem 2.1. If M is a point situated in the plane of triangle $A B C$, then $\left(t_{1}+t_{2}+t_{3}\right)^{2} M P^{2}=\left(t_{1} M A^{2}+t_{2} M B^{2}+t_{3} M C^{2}\right)\left(t_{1}+t_{2}+t_{3}\right)-\left(t_{2} t_{3} a^{2}+t_{3} t_{1} b^{2}+t_{1} t_{2} c^{2}\right)$.

Proof. Using the scalar product of two vectors, from (4) we obtain:

$$
\begin{aligned}
& \left(t_{1}+t_{2}+t_{3}\right)^{2} M P^{2}=t_{1}^{2} M A^{2}+t_{2}^{2} M B^{2}+t_{3}^{2} M C^{2}+ \\
& 2 t_{1} t_{2} \overrightarrow{M A} \cdot \overrightarrow{M B}+2 t_{1} t_{3} \overrightarrow{M A} \cdot \overrightarrow{M C}+2 t_{2} t_{3} \overrightarrow{M B} \cdot \overrightarrow{M C}
\end{aligned}
$$

that is

$$
\begin{gathered}
\left(t_{1}+t_{2}+t_{3}\right)^{2} M P^{2}=t_{1}^{2} M A^{2}+t_{2}^{2} M B^{2}+t_{3}^{2} M C^{2}+ \\
t_{1} t_{2}\left(M A^{2}+M B^{2}-A B^{2}\right)+t_{1} t_{3}\left(M A^{2}+M C^{2}-A C^{2}\right)+t_{2} t_{3}\left(M B^{2}+M C^{2}-B C^{2}\right)
\end{gathered}
$$

hence,

$$
\left(t_{1}+t_{2}+t_{3}\right)^{2} M P^{2}=\left(t_{1} M A^{2}+t_{2} M B^{2}+t_{3} M C^{2}\right)\left(t_{1}+t_{2}+t_{3}\right)-\left(t_{2} t_{3} a^{2}+t_{3} t_{1} b^{2}+t_{1} t_{2} c^{2}\right)
$$

To get the last relation we have used the definition of the scalar product and the Cosine Law as follows

$$
\begin{gathered}
2 \overrightarrow{M A} \cdot \overrightarrow{M B}=2 M A \cdot M B \cos \widehat{A M B}= \\
2 M A \cdot M B \cdot \frac{M A^{2}+M B^{2}-A B^{2}}{2 M A \cdot M B}=M A^{2}+M B^{2}-A B^{2}
\end{gathered}
$$

If we consider that t_{1}, t_{2}, t_{3}, and $t_{1}+t_{2}+t_{3}$ are nonzero real numbers, then the relation (5) becomes the Lagrange's relation

$$
\begin{equation*}
M P^{2}=\frac{t_{1} M A^{2}+t_{2} M B^{2}+t_{3} M C^{2}}{t_{1}+t_{2}+t_{3}}-\frac{t_{1} t_{2} t_{3}}{\left(t_{1}+t_{2}+t_{3}\right)^{2}}\left(\frac{a^{2}}{t_{1}}+\frac{b^{2}}{t_{2}}+\frac{c^{2}}{t_{3}}\right) . \tag{6}
\end{equation*}
$$

If we consider in (6) $M \equiv O$, the circumcenter of the triangle, then it follows

$$
\begin{equation*}
R^{2}-O P^{2}=\frac{t_{1} t_{2} t_{3}}{\left(t_{1}+t_{2}+t_{3}\right)^{2}}\left(\frac{a^{2}}{t_{1}}+\frac{b^{2}}{t_{2}}+\frac{c^{2}}{t_{3}}\right) \tag{7}
\end{equation*}
$$

The following version of Cauchy-Schwarz inequality is also known in the literature as Bergström's inequality (see [6], [7], [8], [19]): If $x_{k}, a_{k} \in \mathbb{R}$ and $a_{k}>0, k=$ $1,2, \ldots, n$, then

$$
\frac{x_{1}^{2}}{a_{1}}+\frac{x_{2}^{2}}{a_{2}}+\ldots+\frac{x_{n}^{2}}{a_{n}} \geq \frac{\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{2}}{a_{1}+a_{2}+\ldots+a_{n}}
$$

with equality if and only if

$$
\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\ldots=\frac{x_{n}}{a_{n}}
$$

Using Bergström's inequality and relation (4), we obtain

$$
R^{2}-O P^{2} \geq \frac{t_{1} t_{2} t_{3}}{\left(t_{1}+t_{2}+t_{3}\right)^{2}} \cdot \frac{(a+b+c)^{2}}{t_{1}+t_{2}+t_{3}}
$$

that is in any triangle with semiperimeter s the following inequality holds:

$$
R^{2}-O P^{2} \geq \frac{4 s^{2} t_{1} t_{2} t_{3}}{\left(t_{1}+t_{2}+t_{3}\right)^{3}}
$$

where $t_{1}: t_{2}: t_{3}$ are the barycentric coordinates of P and $t_{1}, t_{2}, t_{3}>0$. Equality holds if an only if $t_{1}=a, t_{2}=b, t_{3}=c$, that is $P \equiv I$, the incenter of the triangle $A B C$.

Theorem 2.2. ([11], [12]). If the points P and Q have barycentric coordinates $t_{1}: t_{2}: t_{3}$, and $u_{1}: u_{2}: u_{3}$, respectively, with respect to the triangle $A B C$, and $u=u_{1}+u_{2}+u_{3}, t=t_{1}+t_{2}+t_{3}$, then

$$
\begin{equation*}
P Q^{2}=-\alpha \beta \gamma\left(\frac{a^{2}}{\alpha}+\frac{b^{2}}{\beta}+\frac{c^{2}}{\gamma}\right) \tag{8}
\end{equation*}
$$

where the numbers α, β, γ are defined by

$$
\alpha=\frac{u_{1}}{u}-\frac{t_{1}}{t} ; \beta=\frac{u_{2}}{u}-\frac{t_{2}}{t} ; \gamma=\frac{u_{3}}{u}-\frac{t_{3}}{t} .
$$

3. BLundon type inequalities generated by two points

Theorem 3.1. Let P and Q be two points diferent from the circumcircle O, having the barycentric coordinates $t_{1}: t_{2}: t_{3}$, and $u_{1}: u_{2}: u_{3}$ with respect to the triangle $A B C$ and let $u=u_{1}+u_{2}+u_{3}, t=t_{1}+t_{2}+t_{3}$. If $u_{1}, u_{2}, u_{3}, t_{1}, t_{2}, t_{3} \neq 0$, then the following relation holds

$$
\begin{equation*}
\cos \widehat{P O Q}=\frac{2 R^{2}-\frac{t_{1} t_{2} t_{3}}{t^{2}}\left(\frac{a^{2}}{t_{1}}+\frac{b^{2}}{t_{2}}+\frac{c^{2}}{t_{3}}\right)-\frac{u_{1} u_{2} u_{3}}{t^{2}}\left(\frac{a^{2}}{u_{1}}+\frac{b^{2}}{u_{2}}+\frac{c^{2}}{u_{3}}\right)+\alpha \beta \gamma\left(\frac{a^{2}}{\alpha}+\frac{b^{2}}{\beta}+\frac{c^{2}}{\gamma}\right)}{2 \sqrt{\left[R^{2}-\frac{t_{1} t_{2} t_{3}}{t^{2}}\left(\frac{a^{2}}{t_{1}}+\frac{b^{2}}{t_{2}}+\frac{c^{2}}{t_{3}}\right)\right] \cdot\left[R^{2}-\frac{u_{1} u_{2} u_{3}}{u^{2}}\left(\frac{a^{2}}{u_{1}}+\frac{b^{2}}{u_{2}}+\frac{c^{2}}{u_{3}}\right)\right]}} \tag{9}
\end{equation*}
$$

where a, b, c are the length sides of the triangle and

$$
\begin{equation*}
\alpha=\frac{u_{1}}{u}-\frac{t_{1}}{t} ; \beta=\frac{u_{2}}{u}-\frac{t_{2}}{t} ; \gamma=\frac{u_{3}}{u}-\frac{t_{3}}{t} . \tag{10}
\end{equation*}
$$

Proof. Applying the relation (7) for the points P and Q, we have

$$
\begin{equation*}
O P^{2}=R^{2}-\frac{t_{1} t_{2} t_{3}}{t^{2}}\left(\frac{a^{2}}{t_{1}}+\frac{b^{2}}{t_{2}}+\frac{c^{2}}{t_{3}}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
O Q^{2}=R^{2}-\frac{u_{1} u_{2} u_{3}}{u^{2}}\left(\frac{a^{2}}{u_{1}}+\frac{b^{2}}{u_{2}}+\frac{c^{2}}{u_{3}}\right) \tag{12}
\end{equation*}
$$

We use the Law of Cosines in the triangle $P O Q$ to obtain

$$
\begin{equation*}
\cos \widehat{P O Q}=\frac{O P^{2}+O Q^{2}-P Q^{2}}{2 O P \cdot O Q} \tag{13}
\end{equation*}
$$

and from relations (8), (11), (12) and (13) we obtain the relation (9).

Theorem 3.2. Let P and Q be two points diferent from the circumcircle O, having the barycentric coordinates $t_{1}: t_{2}: t_{3}$, and $u_{1}: u_{2}: u_{3}$ with respect to the triangle $A B C$ and let $u=u_{1}+u_{2}+u_{3}, t=t_{1}+t_{2}+t_{3}$. If $u_{1}, u_{2}, u_{3}, t_{1}, t_{2}, t_{3} \neq 0$, then the following relation holds

$$
\begin{gather*}
-2 \sqrt{\left[R^{2}-\frac{t_{1} t_{2} t_{3}}{t^{2}}\left(\frac{a^{2}}{t_{1}}+\frac{b^{2}}{t_{2}}+\frac{c^{2}}{t_{3}}\right)\right] \cdot\left[R^{2}-\frac{u_{1} u_{2} u_{3}}{u^{2}}\left(\frac{a^{2}}{u_{1}}+\frac{b^{2}}{u_{2}}+\frac{c^{2}}{u_{3}}\right)\right]} \leq \\
\alpha \beta \gamma\left(\frac{a^{2}}{\alpha}+\frac{b^{2}}{\beta}+\frac{c^{2}}{\gamma}\right)+2 R^{2}-\left[\frac{t_{1} t_{2} t_{3}}{t^{2}}\left(\frac{a^{2}}{t_{1}}+\frac{b^{2}}{t_{2}}+\frac{c^{2}}{t_{3}}\right)+\frac{u_{1} u_{2} u_{3}}{u^{2}}\left(\frac{a^{2}}{u_{1}}+\frac{b^{2}}{u_{2}}+\frac{c^{2}}{u_{3}}\right)\right] \leq \\
2 \sqrt{\left[R^{2}-\frac{t_{1} t_{2} t_{3}}{t^{2}}\left(\frac{a^{2}}{t_{1}}+\frac{b^{2}}{t_{2}}+\frac{c^{2}}{t_{3}}\right)\right] \cdot\left[R^{2}-\frac{u_{1} u_{2} u_{3}}{u^{2}}\left(\frac{a^{2}}{u_{1}}+\frac{b^{2}}{u_{2}}+\frac{c^{2}}{u_{3}}\right)\right]} \tag{14}
\end{gather*}
$$

where a, b, c are the length sides of the triangle and the numbers α, β, γ are defined by (10).

Proof. The inequalities (14) are simple direct consequences of the fact that $-1 \leq$ $\cos \widehat{P O Q} \leq 1$. The equality in the right inequality holds if and only if $\widehat{P O Q}=0$, that is the points O, P, Q are collinear in the order O, P, Q or O, Q, P. The equality in the left inequality holds if and only if $\widehat{P O Q}=\pi$, that is the points O, P, Q are collinear in the order P, O, Q or Q, O, P.

From Theorem 3.1. it follows that it is a natural and important problem to construct the triangle $A B C$ from the points O, P, Q, when we know their barycentric coordinates. In the special case when $P \equiv I$ and $Q \equiv N$ we know that that points I, G, N are collinear, determining the Nagel line of triangle, and the centroid G lies on the segment $I N$ such that $I G=\frac{1}{3} I N$. Then, using the Euler's line of the triangle, we get the orthocenter H on the ray $(O G$ such that $O H=3 O G$. In this case the problem is reduced to the famous Euler's determination problem i.e. to construct a triangle from its incenter I, circumcenter O, and orthocenter H (see the paper of P.Yiu [24] for details and results). This is a reason to call the problem as the general determination problem.

4. Applications

The formula (3) and the classical Blundon's inequalities (1) can be obtained from (9) and (14) by considering $P=I$, the incenter, and $Q=N$, the Nagel point of the triangle. Indeed, the barycentric coordinates of incenter I and of Nagel's point N are $\left(t_{1}, t_{2}, t_{3}\right)=(a, b, c)$, and $\left(u_{1}, u_{2}, u_{3}\right)=(s-a, s-b, s-c)$, respectively. We have

$$
\begin{equation*}
u=u_{1}+u_{2}+u_{3}=s, \quad u_{1} u_{2} u_{3}=r^{2} s \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
t=t_{1}+t_{2}+t_{3}=2 s, t_{1} t_{2} t_{3}=a b c=4 R r s \tag{16}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
\alpha=\frac{s-a}{s}-\frac{a}{2 s}=\frac{2 s-3 a}{2 s}, \beta=\frac{2 s-3 b}{2 s}, \gamma=\frac{2 s-3 c}{2 s} . \tag{17}
\end{equation*}
$$

Therefore

$$
\begin{gathered}
\alpha \beta \gamma\left(\frac{a^{2}}{\alpha}+\frac{b^{2}}{\beta}+\frac{c^{2}}{\gamma}\right)=\sum_{c y c} \beta \gamma a^{2}=\sum_{c y c}\left(1-\frac{3 b}{2 s}\right)\left(1-\frac{3 c}{2 s}\right) a^{2}= \\
\sum_{c y c} a^{2}-\frac{3}{2 s} \sum_{c y c}\left[a^{2}(a+b+c)-a^{3}\right]+\frac{9 a b c}{4 s^{2}} \sum_{c y c} a= \\
\sum_{c y c} a^{2}-3 \sum_{c y c} a^{2}+\frac{3}{2 s} \sum_{c y c} a^{3}+\frac{9 a b c}{2 s}= \\
-2\left(2 s^{2}-2 r^{2}-8 R r\right)+3\left(s^{2}-3 r^{2}-6 R r\right)+18 R r
\end{gathered}
$$

that is

$$
\begin{equation*}
\alpha \beta \gamma\left(\frac{a^{2}}{\alpha}+\frac{b^{2}}{\beta}+\frac{c^{2}}{\gamma}\right)=-s^{2}-5 r^{2}+16 R r \tag{18}
\end{equation*}
$$

Now, using (16) and (17) we get

$$
\begin{equation*}
\frac{t_{1} t_{2} t_{3}}{t}\left(\frac{a^{2}}{t_{1}}+\frac{b^{2}}{t_{2}}+\frac{c^{2}}{t_{3}}\right)=\frac{4 R r s}{4 s^{2}} \cdot 2 s=2 R r \tag{19}
\end{equation*}
$$

and

$$
\begin{gather*}
\frac{u_{1} u_{2} u_{3}}{u}\left(\frac{a^{2}}{u_{1}}+\frac{b^{2}}{u_{2}}+\frac{c^{2}}{u_{3}}\right)=\frac{r^{2} s}{s^{2}}\left(\frac{a^{2}}{s-a}+\frac{b^{2}}{s-b}+\frac{c^{2}}{s-c}\right)= \\
\frac{r^{2}}{s} \cdot \frac{\sum_{c y c} a^{2}(s-b)(s-c)}{r^{2} s}= \\
\frac{1}{s^{2}}\left\{s^{2} \sum_{c y c} a^{2}-s \sum_{c y c}\left[a^{2}(a+b+c)-a^{3}\right]+a b c \sum_{c y c} a\right\}= \\
\frac{1}{s^{2}}\left(s \sum_{c y c} a^{3}-s^{2} \sum_{c y c} a^{2}+8 R r s^{2}\right)= \\
\frac{1}{s^{2}}\left[2 s^{2}\left(s^{2}-3 r^{2}-6 R r\right)-s^{2}\left(2 s^{2}-2 r^{2}-8 R r\right)+8 R r s^{2}\right]=4 R r-4 r^{2} \tag{20}
\end{gather*}
$$

Using the relations (18)-(20) in (9) we obtain the relation (3). These computations are similar to those given by complex numbers in [1].

Now, consider the excenters I_{a}, I_{b}, I_{c}, and N_{a}, N_{b}, N_{c} the adjoint points to the Nagel point N. For the definition and some properties of the adjoint points N_{a}, N_{b}, N_{c} we refer to the paper of D.Andrica and K.L.Nguyen [2]. Let $s, R, r, r_{a}, r_{b}, r_{c}$ be the semiperimeter, circumradius, inradius, and exradii of triangle $A B C$, respectively. Considering the triangle $I_{a} O N_{a}$, D.Andrica and C.Barbu [3] have proved the following formula

$$
\begin{equation*}
\widehat{\cos }_{I_{a} O N_{a}}=\frac{R^{2}-3 R r_{a}-r_{a}^{2}-\alpha}{\left(R+2 r_{a}\right) \sqrt{R^{2}+2 R r_{a}}} \tag{21}
\end{equation*}
$$

where $\alpha=\frac{a^{2}+b^{2}+c^{2}}{4}$.
Using formula (21), we get the dual form of Blundon's inequalities given in the paper [3]

$$
\begin{equation*}
0 \leq \frac{a^{2}+b^{2}+c^{2}}{4} \leq R^{2}-3 R r_{a}-r_{a}^{2}+\left(R+2 r_{a}\right) \sqrt{R^{2}+2 R r_{a}} \tag{22}
\end{equation*}
$$

There are similar inequalities involving the exradii r_{b} and r_{c}.
We known that the barycentric coordinates of the excenter I_{a} are $\left(t_{1}, t_{2}, t_{3}\right)=$ $(-a, b, c)$, and of the adjoint Nagel point N_{a} are $\left(u_{1}, u_{2}, u_{3}\right)=(s, c-s, b-s)$. Using formula (9) we can obtain the relation (21) and then the dual form of the classical Blundon's inequalities (22).

We have

$$
u=u_{1}+u_{2}+u_{3}=s-a, u_{1} u_{2} u_{3}=s(s-b)(s-c)
$$

and

$$
t=t_{1}+t_{2}+t_{3}=2(s-a), t_{1} t_{2} t_{3}=-a b c=-4 R r s
$$

We obtain

$$
\begin{gathered}
\alpha=\frac{2 s+a}{2(s-a)}=1+\frac{3 a}{2(s-a)}, \\
\beta=\frac{2 c-2 s-b}{2(s-a)}=1-\frac{3 b}{2(s-a)}, \\
\gamma=\frac{2 b-2 s-c}{2(s-a)}=1-\frac{3 c}{2(s-a)} .
\end{gathered}
$$

Therefore,

$$
\begin{equation*}
\frac{t_{1} t_{2} t_{3}}{t^{2}}\left(\frac{a^{2}}{t_{1}}+\frac{b^{2}}{t_{2}}+\frac{c^{2}}{t_{3}}\right)=\frac{-4 R r s}{4(s-a)^{2}} \cdot 2(s-a)=-2 R r_{a} \tag{23}
\end{equation*}
$$

and

$$
\begin{gather*}
\frac{u_{1} u_{2} u_{3}}{u^{2}}\left(\frac{a^{2}}{u_{1}}+\frac{b^{2}}{u_{2}}+\frac{c^{2}}{u_{3}}\right)=\frac{s(s-c)(s-b)}{(s-a)^{2}}\left(\frac{a^{2}}{s}-\frac{b^{2}}{s-c}-\frac{c^{2}}{s-b}\right)= \\
-\left(-a^{2} \cdot \frac{s-b}{s-a} \cdot \frac{s-c}{s-a}+b^{2} \cdot \frac{s}{s-a} \cdot \frac{s-b}{s-a}+c^{2} \cdot \frac{s}{s-a} \cdot \frac{s-c}{s-a}\right)= \\
-\left(-a^{2} \cdot \frac{r_{a}}{r_{b}} \cdot \frac{r_{a}}{r_{c}}+b^{2} \cdot \frac{r_{a}}{r} \cdot \frac{r_{a}}{r_{b}}+c^{2} \cdot \frac{r_{a}}{r} \cdot \frac{r_{a}}{r_{c}}\right)= \\
-r_{a}^{2}\left(\frac{-a^{2}}{r_{b} r_{c}}+\frac{b^{2}}{r r_{b}}+\frac{c^{2}}{r r_{c}}\right)=-r_{a}^{2}\left(\frac{4 R}{r_{a}}+4\right)=-4 R r_{a}-4 r_{a}^{2} \tag{24}
\end{gather*}
$$

where we have used the relation $\frac{-a^{2}}{r_{b} r_{c}}+\frac{b^{2}}{r r_{b}}+\frac{c^{2}}{r r_{c}}=\frac{4 R}{r_{a}}+4$ (see [2], p. 134).
Now, we will calculate the expression:

$$
\begin{aligned}
E= & \alpha \beta \gamma\left(\frac{a^{2}}{\alpha}+\frac{b^{2}}{\beta}+\frac{c^{2}}{\gamma}\right)+\frac{a^{2}+b^{2}+c^{2}}{2}= \\
& a^{2} \beta \gamma+\frac{a^{2}}{2}+b^{2} \alpha \gamma+\frac{b^{2}}{2}+c^{2} \alpha \beta+\frac{c^{2}}{2}= \\
& a^{2}\left[1-\frac{3(b+c)}{2(s-a)}+\frac{9 b c}{4(s-a)^{2}}\right]+\frac{a^{2}}{2}+ \\
& b^{2}\left[1+\frac{3(a-c)}{2(s-a)}-\frac{9 c a}{4(s-a)^{2}}\right]+\frac{b^{2}}{2}+ \\
& c^{2}\left[1+\frac{3(a-b)}{2(s-a)}-\frac{9 a b}{4(s-a)^{2}}\right]+\frac{c^{2}}{2}
\end{aligned}
$$

that is

$$
\begin{gather*}
E=a^{2}\left[\frac{-3 s}{2(s-a)}+\frac{9 b c}{4(s-a)^{2}}\right]+b^{2}\left[\frac{3(s-c)}{2(s-a)}-\frac{9 c a}{4(s-a)^{2}}\right]+ \\
c^{2}\left[\frac{3(s-b)}{2(s-a)}-\frac{9 a b}{4(s-a)^{2}}\right]= \\
\frac{3}{2(s-a)}\left[-a^{2} s+b^{2}(s-c)+c^{2}(s-b)\right]+\frac{9 a b c}{4(s-a)^{2}}(a-b-c)= \\
\frac{3}{2(s-a)}\left[s\left(-a^{2}+b^{2}+c^{2}\right)-b c(b+c)\right]-18 R r_{a} . \tag{25}
\end{gather*}
$$

We have

$$
s\left(-a^{2}+b^{2}+c^{2}\right)-b c(b+c)=2 s b c \cos A-2 b c s+a b c=
$$

$$
\begin{gather*}
2 s b c(\cos A-1)+a b c=a b c-4 s b c \sin ^{2} \frac{A}{2}= \\
a b c-4 s(p-b)(p-c)=a b c-4 S r_{a}=4 S\left(R-r_{a}\right) \tag{26}
\end{gather*}
$$

where S denotes the area of triangle $A B C$. From relations (25) and (26) we get

$$
E=\frac{3}{2(s-a)} \cdot 4 S\left(R-r_{a}\right)-18 R r_{a}=6 r_{a}\left(R-r_{a}\right)-18 R r_{a}=-12 R r_{a}-6 r_{a}^{2}
$$

therefore

$$
\begin{equation*}
\alpha \beta \gamma\left(\frac{a^{2}}{\alpha}+\frac{b^{2}}{\beta}+\frac{c^{2}}{\gamma}\right)=-12 R r_{a}-6 r_{a}^{2}-\frac{a^{2}+b^{2}+c^{2}}{2} \tag{27}
\end{equation*}
$$

Using formulas (23), (24) and (27) in the general formula (9) we obtain the relation (21).

In the paper [13], N. Minculete and C. Barbu have introduced the Cevians of rank $(k ; l ; m)$. The line $A D$ is called ex-Cevian of rank $(k ; l ; m)$ or exterior Cevian of rank $(k ; l ; m)$, if the point D is situated on side $(B C)$ of the non-isosceles triangle $A B C$ and the following relation holds:

$$
\frac{B D}{D C}=\left(\frac{c}{b}\right)^{k} \cdot\left(\frac{s-c}{s-b}\right)^{l} \cdot\left(\frac{a+b}{a+c}\right)^{m}
$$

In the paper [13] it is proved that the Cevians of $\operatorname{rank}(k ; l ; m)$ are concurrent in the point $I(k, l, m)$ called the Cevian point of rank $(k ; l ; m)$ and the barycentric coordinates of $I(k, l, m)$ are:

$$
a^{k}(s-a)^{l}(b+c)^{m}: b^{k}(s-b)^{l}(a+c)^{m}: c^{k}(s-c)^{l}(a+b)^{m}
$$

In the case $l=m=0$, we obtain the Cevian point of rank k.
Let I_{1}, I_{2} be two Cevian points with barycentric coordinates:

$$
I_{i}\left[a^{k_{i}}(s-a)^{l_{i}}(b+c)^{m_{i}}: b^{k_{i}}(s-b)^{l_{i}}(a+c)^{m_{i}}: c^{k_{i}}(s-c)^{l_{i}}(a+b)^{m_{i}}\right], i=1,2
$$

Denote $t_{i}^{1}=a^{k_{i}}(s-a)^{l_{i}}(b+c)^{m_{i}}, t_{i}^{2}=b^{k_{i}}(s-b)^{l_{i}}(a+c)^{m_{i}}, t_{i}^{3}=c^{k_{i}}(s-c)^{l_{i}}(a+b)^{m_{i}}$, $i=1,2$. From formula (9) we obtain
$\cos \widehat{I_{1} O I_{2}}=\frac{2 R^{2}-\frac{t_{1}^{1} t_{1}^{2} t_{1}^{3}}{\left(T_{1}\right)^{2}}\left(\frac{a^{2}}{t_{1}^{1}}+\frac{b^{2}}{t_{1}^{2}}+\frac{c^{2}}{t_{1}^{3}}\right)-\frac{t_{2}^{1} t_{2}^{2} t_{2}^{3}}{\left(T_{2}\right)^{2}}\left(\frac{a^{2}}{t_{2}^{1}}+\frac{b^{2}}{t_{2}^{2}}+\frac{c^{2}}{t_{2}^{3}}\right)+\alpha \beta \gamma\left(\frac{a^{2}}{\alpha}+\frac{b^{2}}{\beta}+\frac{c^{2}}{\gamma}\right)}{2 \sqrt{\left[R^{2}-\frac{t_{1}^{1} t_{1}^{2} t_{1}^{3}}{\left(T_{1}\right)^{2}}\left(\frac{a^{2}}{t_{1}^{1}}+\frac{b^{2}}{t_{1}^{2}}+\frac{c^{2}}{t_{1}^{3}}\right)\right] \cdot\left[R^{2}-\frac{t_{2}^{1} t_{2}^{2} t_{2}^{3}}{\left(T_{2}\right)^{2}}\left(\frac{a^{2}}{t_{2}^{1}}+\frac{b^{2}}{t_{2}^{2}}+\frac{c^{2}}{t_{2}^{3}}\right)\right]}}$,
where $T_{1}=t_{1}^{1}+t_{1}^{2}+t_{1}^{3}, T_{2}=t_{2}^{1}+t_{2}^{2}+t_{2}^{3}$, and for $i=1,2$, we have

$$
\frac{t_{i}^{1} t_{i}^{2} t_{i}^{3}}{\left(T_{i}\right)^{2}}\left(\frac{a^{2}}{t_{i}^{1}}+\frac{b^{2}}{t_{i}^{2}}+\frac{c^{2}}{t_{i}^{3}}\right)=\frac{\prod_{c y c} a^{k_{i}}(s-a)^{l_{i}}(b+c)^{m_{i}}}{\sum_{c y c} a^{k_{i}}(s-a)^{l_{i}}(b+c)^{m_{i}}} \cdot \sum_{c y c} \frac{a^{2}}{a^{k_{i}}(s-a)^{l_{i}}(b+c)^{m_{i}}},
$$

and

$$
\begin{aligned}
& \alpha=\frac{a^{k_{1}}(s-a)^{l_{1}}(b+c)^{m_{1}}}{\sum_{c y c} a^{k_{1}}(s-a)^{l_{1}}(b+c)^{m_{1}}}-\frac{a^{k_{2}}(s-a)^{l_{2}}(b+c)^{m_{2}}}{\sum_{c y c} a^{k_{2}}(s-a)^{l_{2}}(b+c)^{m_{2}}}, \\
& \beta=\frac{b^{k_{1}}(s-b)^{l_{1}}(a+c)^{m_{1}}}{\sum_{c y c} a^{k_{1}}(s-a)^{l_{1}}(b+c)^{m_{1}}}-\frac{b^{k_{2}}(s-b)^{l_{2}}(a+c)^{m_{2}}}{\sum_{c y c} a^{k_{2}}(s-a)^{l_{2}}(b+c)^{m_{2}}}, \\
& \gamma=\frac{c^{k_{1}}(s-c)^{l_{1}}(a+b)^{m_{1}}}{\sum_{c y c} a^{k_{1}}(s-a)^{l_{1}}(b+c)^{m_{1}}}-\frac{c^{k_{2}}(s-c)^{l_{2}}(a+b)^{m_{2}}}{\sum_{c y c} a^{k_{2}}(s-a)^{l_{2}}(b+c)^{m_{2}}} .
\end{aligned}
$$

If I_{1}, I_{2} are Cevian points of rank k_{1}, k_{2}, then formula (28) becomes

$$
\begin{equation*}
\cos \widehat{I_{1} O I_{2}}=\frac{2 R^{2}-(a b c)^{k_{1}} \frac{S_{2-k_{1}}}{\left(S_{k_{1}}\right)^{2}}-(a b c)^{k_{2}} \frac{S_{2-k_{2}}}{\left(S_{k_{2}}\right)^{2}}+\sum_{c y c}\left(\frac{b^{k_{1}}}{S_{k_{1}}}-\frac{b^{k_{2}}}{S_{k_{2}}}\right)\left(\frac{c^{k_{1}}}{S_{k_{1}}}-\frac{c^{k_{2}}}{S_{k_{2}}}\right) a^{2}}{2 \sqrt{\left[R^{2}-(a b c)^{k_{1}} \frac{S_{2-k_{1}}}{\left(S_{k_{1}}\right)^{2}}\right]\left[R^{2}-(a b c)^{k_{2}} \frac{S_{2-k_{2}}}{\left(S_{k_{2}}\right)^{2}}\right]}}, \tag{29}
\end{equation*}
$$

where $S_{l}=a^{l}+b^{l}+c^{l}$.
Here are few special cases of formula (29). For $k_{1}=0$ and $k_{2}=1$ we get the centroid G and the incenter I of barycentric coordinates $(1 ; 1 ; 1)$ and $(a ; b ; c)$, respectively. Formula (29) becomes

$$
\begin{equation*}
\cos \widehat{G O I}=\frac{6 R^{2}-s^{2}-r^{2}+2 R r}{2 \sqrt{9 R^{2}-2 s^{2}+2 r^{2}+8 R r} \cdot \sqrt{R^{2}-2 R r}} \tag{30}
\end{equation*}
$$

where $a b c=4 s R r, S_{0}=3, S_{1}=2 s, S_{2}=2\left(s^{2}-r^{2}-4 R r\right)$.
For $k_{2}=2$ we obtain the Lemoine point L of triangle $A B C$, of barycentric coordinates $\left(a^{2} ; b^{2} ; c^{2}\right)$, and other two formulas are generated

$$
\begin{equation*}
\cos \widehat{G O L}=\frac{6 R^{2} S_{2}-S_{2}^{2}+S_{4}}{2 \sqrt{9 R^{2}-S_{2}} \cdot \sqrt{R^{2} S_{2}^{2}-48(R r s)^{2}}} \tag{31}
\end{equation*}
$$

where $S_{4}=S_{2}^{2}-2\left[\left(s^{2}+r^{2}+4 R r\right)^{2}-16 R r s^{2}\right]$, and

$$
\begin{equation*}
\cos \widehat{I O L}=\frac{R S_{2}+r S_{2}-4 r s^{2}}{2 \sqrt{R^{2}-2 R r} \cdot \sqrt{S_{2}^{2}-48 r^{2} s^{2}}} \tag{32}
\end{equation*}
$$

Each of the formulas $(30),(31),(32)$ generates a Blundon type inequality, but these inequalities have not nice geometric interpretations.

Let I_{1}, I_{2}, I_{3} be three Cevian points of $\operatorname{rank}(k ; l ; m)$ with barycentric coordinates as follows:

$$
a^{k_{i}}(s-a)^{l_{i}}(b+c)^{m_{i}}: b^{k_{i}}(s-b)^{l_{i}}(a+c)^{m_{i}}: c^{k_{i}}(s-c)^{l_{i}}(a+b)^{m_{i}}, i=1,2,3
$$

and let $t_{i}^{1}=a^{k_{i}}(s-a)^{l_{i}}(b+c)^{m_{i}}, t_{i}^{2}=b^{k_{i}}(s-b)^{l_{i}}(a+c)^{m_{i}}, t_{i}^{3}=c^{k_{i}}(s-c)^{l_{i}}(a+b)^{m_{i}}$. Now, consider the numbers

$$
\alpha_{i j}=\frac{t_{j}^{1}}{t_{j}^{1}+t_{j}^{2}+t_{j}^{3}}-\frac{t_{i}^{1}}{t_{i}^{1}+t_{i}^{2}+t_{i}^{3}},
$$

and

$$
\beta_{i j}=\frac{t_{j}^{2}}{t_{j}^{1}+t_{j}^{2}+t_{j}^{3}}-\frac{t_{i}^{2}}{t_{i}^{1}+t_{i}^{2}+t_{i}^{3}},
$$

and

$$
\gamma_{i j}=\frac{t_{j}^{3}}{t_{j}^{1}+t_{j}^{2}+t_{j}^{3}}-\frac{t_{i}^{3}}{t_{i}^{1}+t_{i}^{2}+t_{i}^{3}},
$$

for all $i, j \in\{1,2,3\}$. Applying the relation (5) we obtain

$$
I_{i} I_{j}^{2}=-\alpha_{i j} \cdot \beta_{i j} \cdot \gamma_{i j} \cdot\left(\frac{a^{2}}{\alpha_{i j}}+\frac{b^{2}}{\beta_{i j}}+\frac{c^{2}}{\gamma_{i j}}\right)
$$

for all $i, j \in\{1,2,3\}$. Using the Cosine Law in triangle $I_{1} I_{2} I_{3}$ it follows

$$
\begin{gather*}
\cos \widehat{I_{1} I_{2} I_{3}}=\frac{I_{1} I_{2}^{2}+I_{2} I_{3}^{2}-I_{3} I_{1}^{2}}{2 I_{1} I_{2} \cdot I_{2} I_{3}}= \\
\frac{-a^{2}\left(\beta_{12} \gamma_{12}+\beta_{23} \gamma_{23}-\beta_{31} \gamma_{31}\right)-b^{2}\left(\gamma_{12} \alpha_{12}+\gamma_{23} \alpha_{23}-\gamma_{31} \alpha_{31}\right)+c^{2}\left(\alpha_{12} \beta_{12}+\alpha_{23} \beta_{23}-\alpha_{31} \beta_{31}\right)}{2 \sqrt{-\beta_{12} \gamma_{12} a^{2}-\gamma_{12} \alpha_{12} b^{2}-\alpha_{12} \beta_{12} c^{2}} \cdot \sqrt{-\beta_{23} \gamma_{23} a^{2}-\gamma_{23} \alpha_{23} b^{2}-\alpha_{23} \beta_{23} c^{2}}} \tag{33}
\end{gather*}
$$

Theorem 4.1. The following inequalities hold

$$
\begin{align*}
& \quad-2 \sqrt{-\beta_{12} \gamma_{12} a^{2}-\gamma_{12} \alpha_{12} b^{2}-\alpha_{12} \beta_{12} c^{2}} \cdot \sqrt{-\beta_{23} \gamma_{23} a^{2}-\gamma_{23} \alpha_{23} b^{2}-\alpha_{23} \beta_{23} c^{2}} \leq \\
& -a^{2}\left(\beta_{12} \gamma_{12}+\beta_{23} \gamma_{23}-\beta_{31} \gamma_{31}\right)-b^{2}\left(\gamma_{12} \alpha_{12}+\gamma_{23} \alpha_{23}-\gamma_{31} \alpha_{31}\right)+c^{2}\left(\alpha_{12} \beta_{12}+\alpha_{23} \beta_{23}-\alpha_{31} \beta_{31}\right) \leq \\
& \quad 2 \sqrt{-\beta_{12} \gamma_{12} a^{2}-\gamma_{12} \alpha_{12} b^{2}-\alpha_{12} \beta_{12} c^{2}} \cdot \sqrt{-\beta_{23} \gamma_{23} a^{2}-\gamma_{23} \alpha_{23} b^{2}-\alpha_{23} \beta_{23} c^{2}} \tag{34}
\end{align*}
$$

Proof. The inequalities (34) are simple direct consequences of the inequalities $-1 \leq$ $\cos \widehat{I_{1} I_{2} I_{3}} \leq 1$.

References

[1] T. Andreescu and D. Andrica, Complex Number from A to..Z. Birkhauser, Boston-Basel-Berlin, 2006.
[2] D. Andrica and K. L. Nguyen, A note on the Nagel and Gergonne points. Creat. Math. Inform., 17 (2008).
[3] D. Andrica and C. I. Barbu, A geometric proof of Blundon's inequalities. Math. Inequal. Appl., 15(2012), no. 2, 361-370.
[4] D. Andrica and C. I. Barbu, A natural geometric approach of Blundon-Wu inequalities. (submitted).
[5] W. J. Blundon, Inequalities associated with the triangle. Canad. Math. Bull. 8(1965), 615-626.
[6] E. F. Bechenbach and R. Bellman, Inequalities. Springer, Berlin, Göttingen and Heidelberg, 1961.
[7] R. Bellman, An Inequality Due to Bergström. Amer. Math. Montly, 62(1955), 172-173.
[8] A. Bergström, A triangle inequality for matrices. Den Elfte Skandinaviske Matematikerkongress, Oslo, 1952, 264-267.
[9] O. Bottema, On the Area of a Triangle in Barycentric Coordinates. Crux. Math., 8(1982), 228-231.
[10] C.J.Bradley, The Algebra of Geometry: Cartesian, Areal and Projective Coordinates. Bath: Highperception, 2007.
[11] C. Coandă, Geometrie analitică în coordonate baricentrice. Reprograph, Craiova, 2005.
[12] C. Coşniţă, Coordonnées barycentriques. Librairie Vuibert, Paris, 1941.
[13] G. Dospinescu, M. Lascu, C. Pohoaţă and M. Tetiva. An Elementary proof of Blundon's Inequality, JIPAM, 9(2008).
[14] C. Kimberling, Encyclopedia of triangle centers. http://faculty.evansville.edu.
[15] N. Minculete and C. I. Barbu, About the area of triangle determined by cevians of rank (k;l;m). Sci. Stud. Res. Math. Inform., Bacau, 21(2011), no. 1, 139-148.
[16] D. S. Mitrinović, J. E. Pečarić and V. Volenec, Recent advances in geometric inequalities. Kluwer Acad. Publ., Amsterdam, 1989.
[17] C. P. Niculescu, A new look at Newton's inequality. Journal of Inequalities in Pure and Applied Mathematics, $\mathbf{1}(2000)$, no. 2, article 17.
[18] C. P. Niculescu, On the algebraic character of Blundon's inequality. In: Inequality Theory and Applications, 3(2003), Nova Science Publishers, New York, 139-144.
[19] O. T. Pop, About Bergström's inequality. J. Math. Inequal., 3(2009), no. 2, 237-242.
[20] R. A. Satnoianu, General power inequalities between the sides and the crumscribed and inscribed radii related to the fundamental triangle inequality. Math. Inequal. Appl., 5(2002), no.4, 7475-751.
[21] J. A. Scott, Some examples of the use of areal coordinates in triangle geometry. The Mathematical Gazette, 11(1999), 472-477.
[22] S. Wu, A sharpened version of the fundamental triangle inequality. Math. Inequal. Appl., 11(2008), no. 3, 477-482.
[23] P. Yiu, The Uses of Homogeneous Barycentric Coordinates in Plane Euclidean Geometry. Int. J. Math., 31(2000), 569-578.
[24] P. Yiu, Conic Solution of Euler's Triangle Determination Problem. J. Geom. Graph., 12 (2008), no.1, 75-80.

Dorin Andrica
Faculty of Mathematics and Computer Science
Babeş-Bolyai University
Cluj-Napoca, Romania
email: dandrica@math.ubbcluj.ro
and
Mathematics Department
King Saud University
Ryiadh, Saudi Arabia
email: dandrica@ksu.edu.sa

Cătălin Barbu
Mathematics Department
Vasile Alecsandri National College
Bacău, Romania
email:kafka_mate@yahoo.com

Nicuşor Minculete
Mathematics Department
Dimitrie Cantemir University
Braşov, Romania
email: minculeten@yahoo.com

