"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 20 (2010), No. 1, 37-44

THE ISOTOMIC TRANSVERSAL THEOREM AND THE NEUBERG'S THEOREM IN THE POINCARÉ MODEL OF HYPERBOLIC GEOMETRY

CĂTĂLIN BARBU

Abstract

In this study, we present a proof of the isotomic transversal theorem and the Neuberg's theorem in hyperbolic geometry

1. Introduction

Hyperbolic geometry appeared in the first half of the $19^{\text {th }}$ century as an attempt to understand Euclid's axiomatic basis of geometry. It is also known as a type of non-euclidean geometry, being in many respects similar to euclidean geometry. Hyperbolic geometry includes similar concepts as distance and angle. Both these geometries have many results in common but many are different. Several useful models of hyperbolic geometry are studied in the literature as, for instance, the Poincaré disc and ball models, the Poincaré half-plane model, and the Beltrami-Klein disc and ball models [1] etc. Following [2] and [3] and earlier discoveries, the Beltrami-Klein model is also known as the Einstein relativistic velocity model. Here, in this study, we give hyperbolic versions of the isotomic transversal theorem and the Neuberg theorem.

Keywords and phrases: hyperbolic geometry, hyperbolic triangle, Neuberg's theorem, isotomic transversal, gyrovector.
(2000)Mathematics Subject Classification: 51K05, 51M10.

The well-known the isotomic transversal theorem states that if l is a line not through any vertex of a triangle $A B C$ such that l meets sidelines $B C, C A$, and $A B$ in points A^{\prime}, B^{\prime}, and C^{\prime}, respectively, and let $A^{\prime \prime}$ be the reflection of A^{\prime} about the midpoint of segment $B C$, and construct $B^{\prime \prime}$ and $C^{\prime \prime}$ similarly, then $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$ are collinear in a line known as the isotomic transversal of l [4]. The Neuberg theorem states that if three lines from of a triangle $A B C$, and concurrent at P, meet the opposite sides at P_{1}, P_{2}, P_{3} respectively; and if we cut off $B Q_{1}, C Q_{2}, A Q_{3}$ equal respectively $P_{1} C, P_{2} A, P_{3} B$, then $A Q_{1}, B Q_{2}$, and $C Q_{3}$ are concurrent [5]. We use in this study of Poincaré disc model.

We begin with the recall of some basic geometric notions and properties in the Poincaré disc. Let D denote the unit disc in the complex z - plane, i.e.

$$
D=\{z \in \mathbb{C}:|z|<1\}
$$

The most general Möbius transformation of D is

$$
z \rightarrow e^{i \theta} \frac{z_{0}+z}{1+\overline{z_{0}} z}=e^{i \theta}\left(z_{0} \oplus z\right),
$$

which induces the Möbius addition \oplus in D, allowing the Möbius transformation of the disc to be viewed as a Möbius left gyro-translation

$$
z \rightarrow z_{0} \oplus z=\frac{z_{0}+z}{1+\overline{z_{0}} z}
$$

followed by a rotation. Here $\theta \in \mathbb{R}$ is a real number, $z, z_{0} \in D$, and $\overline{z_{0}}$ is the complex conjugate of z_{0}. Let $\operatorname{Aut}(D, \oplus)$ be the automorphism group of the grupoid (D, \oplus). If we define

$$
g y r: D \times D \rightarrow \operatorname{Aut}(D, \oplus), g y r[a, b]=\frac{a \oplus b}{b \oplus a}=\frac{1+a \bar{b}}{1+\bar{a} b},
$$

then is true gyro-commutative law

$$
a \oplus b=g y r[a, b](b \oplus a) .
$$

A gyro-vector space (G, \oplus, \otimes) is a gyro-commutative gyro-group (G, \oplus) that obeys the following axioms:
(1) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a} \cdot \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{b}=\mathbf{a} \cdot \mathbf{b}$ for all points $\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v} \in G$.
(2) G admits a scalar multiplication, \otimes, possessing the following properties. For all real numbers $r, r_{1}, r_{2} \in \mathbb{R}$ and all points $\mathbf{a} \in G$:
(G1) $1 \otimes \mathbf{a}=\mathbf{a}$
(G2) $\left(r_{1}+r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes \mathbf{a} \oplus r_{2} \otimes \mathbf{a}$
(G3) $\left(r_{1} r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes\left(r_{2} \otimes \mathbf{a}\right)$
(G4) $\frac{|r| \otimes \mathbf{a}}{\|r \otimes \mathbf{a}\|}=\frac{\mathbf{a}}{\|\mathbf{a}\|}$
(G5) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}](r \otimes \mathbf{a})=r \otimes \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a}$
(G6) $\operatorname{gyr}\left[r_{1} \otimes \mathbf{v}, r_{1} \otimes \mathbf{v}\right]=1$
(3) Real vector space structure $(\|G\|, \oplus, \otimes)$ for the set $\|G\|$ of onedimensional "vectors"

$$
\|G\|=\{ \pm\|\mathbf{a}\|: \mathbf{a} \in G\} \subset \mathbb{R}
$$

with vector addition \oplus and scalar multiplication \otimes, such that for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in G$,
(G7) $\|r \otimes \mathbf{a}\|=|r| \otimes\|\mathbf{a}\|$
(G8) $\|\mathbf{a} \oplus \mathbf{b}\| \leq\|\mathbf{a}\| \oplus\|\mathbf{b}\|$
Definition 1. The hyperbolic distance function in D is defined by the equation

$$
d(a, b)=|a \ominus b|=\left|\frac{a-b}{1-\bar{a} b}\right| .
$$

Here, $a \ominus b=a \oplus(-b)$, for $a, b \in D$.
For further details we refer to the recent book of A.Ungar [6].
Theorem 2. (The Menelaus's theorem for hyperbolic triangle) If l is an gyroline not through any gyrovertex of an gyrotriangle $A B C$ such that l meets $B C$ in $D, C A$ in E, and $A B$ in F, then

$$
\frac{(A F)_{\gamma}}{(B F)_{\gamma}} \cdot \frac{(B D)_{\gamma}}{(C D)_{\gamma}} \cdot \frac{(C E)_{\gamma}}{(A E)_{\gamma}}=1,
$$

where $v_{\gamma}=\frac{v}{1-v^{2}}$.
(See [7])
Theorem 3. (Converse of Menelaus's theorem for hyperbolic triangle) If D lies on the gyroline $B C, E$ on $C A$, and F on $A B$ such that

$$
\frac{(A F)_{\gamma}}{(B F)_{\gamma}} \cdot \frac{(B D)_{\gamma}}{(C D)_{\gamma}} \cdot \frac{(C E)_{\gamma}}{(A E)_{\gamma}}=1,
$$

then D, E, and F are collinear.
(See [7])

Theorem 4. (The Ceva's theorem for hyperbolic triangle) If M is a point not on any side of a gyrotriangle $A_{1} A_{2} A_{3}$ such that $A_{3} M$ and $A_{1} A_{2}$ meet in $P, A_{2} M$ and $A_{3} A_{1}$ in Q, and $A_{1} M$ and $A_{2} A_{3}$ meet in R, then

$$
\frac{\left(A_{1} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}} \cdot \frac{\left(A_{2} R\right)_{\gamma}}{\left(A_{3} R\right)_{\gamma}} \cdot \frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{1} Q\right)_{\gamma}}=1
$$

(See [8])
Theorem 5. (Converse of Ceva's theorem for hyperbolic triangle) If P lies on the gyroline $A_{1} A_{2}, R$ on $A_{2} A_{3}$, and Q on $A_{3} A_{1}$ such that

$$
\frac{\left(A_{1} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}} \cdot \frac{\left(A_{2} R\right)_{\gamma}}{\left(A_{3} R\right)_{\gamma}} \cdot \frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{1} Q\right)_{\gamma}}=1
$$

and two of the gyrolines $A_{1} R, A_{2} Q$ and $A_{3} P$ meet, then all three are concurrent.
(See [8])
Theorem 6. (The Carnot's theorem for hyperbolic triangle) Let $A B C$ be a hyperbolic triangle in the Poincaré disc, whose are the points A, B and C of the disc and whose sides (directed counterclockwise) are $a=-B \oplus C, b=-C \oplus A$ and $c=-A \oplus B$. Let the points A^{\prime}, B^{\prime} and C^{\prime} be located on the sides a, b and c of the hyperbolic triangle $A B C$ respectively. If the perpendiculars to the sides of the hyperbolic triangle at the points A^{\prime}, B^{\prime} and C^{\prime} are concurrent, then the following holds:
$\left|-A \oplus C^{\prime}\right|^{2} \ominus\left|-B \oplus C^{\prime}\right|^{2} \oplus\left|-B \oplus A^{\prime}\right|^{2} \ominus\left|-C \oplus A^{\prime}\right|^{2} \oplus\left|-C \oplus B^{\prime}\right|^{2} \ominus\left|-A \oplus B^{\prime}\right|^{2}=0$.
(See [10])
Theorem 7. (Converse of Carnot's theorem for hyperbolic triangle) Let $A B C$ be a hyperbolic triangle in the Poincaré disc, whose are the points A, B and C of the disc and whose sides (directed counterclockwise) are $a=-B \oplus C, b=-C \oplus A$ and $c=-A \oplus B$. Let the points A^{\prime}, B^{\prime} and C^{\prime} be located on the sides a, b and c of the hyperbolic triangle $A B C$ respectively. If the following holds
$\left|-A \oplus C^{\prime}\right|^{2} \ominus\left|-B \oplus C^{\prime}\right|^{2} \oplus\left|-B \oplus A^{\prime}\right|^{2} \ominus\left|-C \oplus A^{\prime}\right|^{2} \oplus\left|-C \oplus B^{\prime}\right|^{2} \ominus\left|-A \oplus B^{\prime}\right|^{2}=0$, and two of the three perpendiculars to the sides of the hyperbolic triangle at the points A^{\prime}, B^{\prime} and C^{\prime} are concurrent, then the three perpendiculars are concurrent.
(See [10])

2. Main RESUltS

In this section, we prove the isotomic transversal theorem and Neuberg's theorem for hyperbolic triangle.

Theorem 8. (The isotomic transversal theorem). Let l be a gyroline not through any gyrovertex of a gyrotriangle $A B C$ such that l meets gyroside $B C, C A$, and $A B$ in gyropoints A^{\prime}, B^{\prime}, and C^{\prime}, respectively, and let $A^{\prime \prime}$ be the reflection of A^{\prime} about the midpoint of gyrosegment $B C$, and construct $B^{\prime \prime}$ and $C^{\prime \prime}$ similarly, then the gyropoints $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$ are collinear.
Proof. If we use a theorem 2 for the gytriangle $A B C$ and collinear gyropoints A^{\prime}, B^{\prime}, and C^{\prime} (See Figure 1), then

Figure 1

$$
\begin{equation*}
\frac{\left(B A^{\prime}\right)_{\gamma}}{\left(A^{\prime} C\right)_{\gamma}} \cdot \frac{\left(C B^{\prime}\right)_{\gamma}}{\left(B^{\prime} A\right)_{\gamma}} \cdot \frac{\left(A C^{\prime}\right)_{\gamma}}{\left(C^{\prime} B\right)_{\gamma}}=1 \tag{1}
\end{equation*}
$$

Because

$$
d\left(A^{\prime}, B\right)=d\left(A^{\prime \prime}, C\right), d\left(A^{\prime}, C\right)=d\left(A^{\prime \prime}, B\right), d\left(B^{\prime}, C\right)=d\left(B^{\prime \prime}, A\right),
$$

and

$$
d\left(B^{\prime}, A\right)=d\left(B^{\prime \prime}, C\right), d\left(C^{\prime}, A\right)=d\left(C^{\prime \prime}, B\right), d\left(C^{\prime}, B\right)=d\left(C^{\prime \prime}, A\right)
$$

we get
(2) $\frac{\left(B A^{\prime}\right)_{\gamma}}{\left(A^{\prime} C\right)_{\gamma}}=\frac{\left(C A^{\prime \prime}\right)_{\gamma}}{\left(A^{\prime \prime} B\right)_{\gamma}}, \frac{\left(C B^{\prime}\right)_{\gamma}}{\left(B^{\prime} A\right)_{\gamma}}=\frac{\left(A B^{\prime \prime}\right)_{\gamma}}{\left(B^{\prime \prime} C\right)_{\gamma}}, \frac{\left(A C^{\prime}\right)_{\gamma}}{\left(C^{\prime} B\right)_{\gamma}}=\frac{\left(B C^{\prime \prime}\right)_{\gamma}}{\left(C^{\prime \prime} A\right)_{\gamma}}$.

From (1) and (2) we have

$$
\frac{\left(C A^{\prime \prime}\right)_{\gamma}}{\left(A^{\prime \prime} B\right)_{\gamma}} \cdot \frac{\left(A B^{\prime \prime}\right)_{\gamma}}{\left(B^{\prime \prime} C\right)_{\gamma}} \cdot \frac{\left(B C^{\prime \prime}\right)_{\gamma}}{\left(C^{\prime \prime} A\right)_{\gamma}}=1,
$$

and from the theorem 3, we obtain that the gyropoints $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$ are collinear in a line known as the isotomic transversal of l.

Theorem 9. (Neuberg's theorem for hyperbolic triangle). If three gyrolines from of a gyrotriangle $A B C$, and concurrent at P, meet the opposite gyrosides at P_{1}, P_{2}, P_{3} respectively; and if we cut off $B Q_{1}, C Q_{2,} A Q_{3}$ equal respectively $P_{1} C, P_{2} A, P_{3} B$, and two of the gyrolines $A Q_{1}, B Q_{2}$, and $C Q_{3}$ meet, then all three are concurrent.
Proof. If we use Ceva's theorem in the gyrotriangle $A B C$ (See Theorem 3, Figure 2), then

$$
\begin{equation*}
\frac{\left(B P_{1}\right)_{\gamma}}{\left(P_{1} C\right)_{\gamma}} \cdot \frac{\left(C P_{2}\right)_{\gamma}}{\left(P_{2} A\right)_{\gamma}} \cdot \frac{\left(A P_{3}\right)_{\gamma}}{\left(P_{3} B\right)_{\gamma}}=1 . \tag{3}
\end{equation*}
$$

Figure 2
Because of $d\left(B, P_{1}\right)=d\left(C, Q_{1}\right), d\left(P_{1}, C\right)=d\left(B, Q_{1}\right), d\left(C, P_{2}\right)=$ $d\left(A, Q_{2}\right), d\left(P_{2}, A\right)=d\left(C, Q_{2}\right), d\left(B, P_{3}\right)=d\left(A, Q_{3}\right), d\left(P_{3}, A\right)=$ $d\left(B, Q_{3}\right)$, then equations (3) become

$$
\begin{equation*}
\frac{\left(C Q_{1}\right)_{\gamma}}{\left(Q_{1} B\right)_{\gamma}} \cdot \frac{\left(A Q_{2}\right)_{\gamma}}{\left(Q_{2} C\right)_{\gamma}} \cdot \frac{\left(B Q_{3}\right)_{\gamma}}{\left(Q_{3} A\right)_{\gamma}}=1 \tag{4}
\end{equation*}
$$

and by Theorem 4 we obtain that the gyrolines $A Q_{1}, B Q_{2}$, and $C Q_{3}$ are concurrent in a gyropoint Q, called the isotomic conjugate of P.

Corollary 10. The centroid G of a gyrotriangle is its own isotomic conjugate of G.

Corollary 11. If exists the Nagel point of the gyrotriangle $A B C$, then the Gergonne gyropoint is your isotomic conjugate.

Theorem 12. Let $A B C$ be a gyrotriangle in the Poincaré disc, whose are the gyropoints A, B and C of the disc and whose sides (directed counterclockwise) are $a=-B \oplus C, b=-C \oplus A$ and $c=-A \oplus B$. Let the gyropoints A^{\prime}, B^{\prime} and C^{\prime} be located on the gyrosides a, b and c of the gyrotriangle $A B C$ respectively, and let $A^{\prime \prime}$ be the reflection of A^{\prime} about the midpoint of gyrosegment $B C$, and construct $B^{\prime \prime}$ and $C^{\prime \prime}$ similarly. If the perpendiculars to the gyrosides of the gyrotriangle at the points A^{\prime}, B^{\prime} and C^{\prime} are concurrent, and two of the three perpendiculars to the sides of the hyperbolic triangle at the points $A^{\prime \prime}, B^{\prime \prime}$ and $C^{\prime \prime}$ are concurrent, then the three perpendiculars are concurrent.

Proof. If we use Theorem 6 in the gyrotriangle $A B C$ (See Figure 3), then
(5)
$\left|-A \oplus C^{\prime}\right|^{2} \ominus\left|-B \oplus C^{\prime}\right|^{2} \oplus\left|-B \oplus A^{\prime}\right|^{2} \ominus\left|-C \oplus A^{\prime}\right|^{2} \oplus\left|-C \oplus B^{\prime}\right|^{2} \ominus\left|-A \oplus B^{\prime}\right|^{2}=0$.

Figure 3

$$
\begin{gathered}
\text { Because }\left|-A \oplus C^{\prime}\right|=\left|\left|-B \oplus C^{\prime \prime}\right|,\left|-B \oplus C^{\prime}\right|\right. \\
\left|-A \oplus C^{\prime \prime}\right|,\left|-B \oplus A^{\prime}\right|= \\
\left|-B \oplus A^{\prime \prime}\right|,\left|-C \oplus B^{\prime}\right|=
\end{gathered}=\left|-C \oplus A^{\prime \prime}\right|,\left|-C \oplus A^{\prime}\right|=
$$

then (5) become
$\left|-B \oplus C^{\prime \prime}\right|^{2} \ominus\left|-A \oplus C^{\prime \prime}\right|^{2} \oplus\left|-C \oplus A^{\prime \prime}\right|^{2} \ominus\left|-B \oplus A^{\prime \prime}\right|^{2} \oplus\left|-A \oplus B^{\prime \prime}\right|^{2} \ominus\left|-C \oplus B^{\prime \prime}\right|^{2}=0$, and by Theorem 7 we obtain the conlusion.

References

[1] McCleary, J., Geometry from a differentiable viewpoint, Cambridge University Press, Cambridge, 1994.
[2] Ungar, A., Analytic hyperbolic geometry and Albert Einstein's special theory of relativity, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
[3] Ungar, A., Hyperbolic triangle centers: The special relativistic approach, Springer Verlag, New York, 2010.
[4] Kimberling, C., Triangle Centers and Central Triangles, Congressus Numerantium 129, Utilitas Mathematica Publishing, 1998.
[5] Johnson, R. A., Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle, Boston, MA: Houghton Mifflin, pp. 157-159, 1929.
[6] Ungar, A., A Gyrovector Space Approach to Hyperbolic Geometry. Morgan \& Claypool Publishers, 2009.
[7] Smarandache, F., Barbu, C., The Hyperbolic Menelaus Theorem in The Poincaré Disc Model of Hyperbolic Geometry, Italian Journal of Pure and Applied Mathematics (to appear).
[8] Andrica, D., Barbu, C., The Hyperbolic Ceva Theorem in The Poincaré Disc Model of Hyperbolic Geometry, Automation, Computers, Applied Mathematics (to appear).
[9] F. Smarandache, Généralisation du Théorème de Ménélaüs, Rabat, Morocco, Seminar for the selection and preparation of the Moroccan students for the International Olympiad of Mathematics in Paris - France, 1983.
[10] Demirel, O., Soytürk, E., The hyperbolic Carnot theorem in the Poincaré disc model of hyperbolic geometry, Novi Sad J. Math., Vol. 38, 2008, 33-39.
"Vasile Alecsandri" College
Bacău, Romania
e-mail : kafka_mate@yahoo.com

