Smarandache's Cevian Triangle Theorem in The Einstein Relativistic Velocity Model of Hyperbolic Geometry

Cătălin Barbu
"Vasile Alecsandri" College - Bacău, str. Iosif Cocea, nr. 12, sc. A, apt. 13, Romania. E-mail: kafka_mate@ yahoo.com

In this note, we present a proof of Smarandache's cevian triangle hyperbolic theorem in the Einstein relativistic velocity model of hyperbolic geometry.

1 Introduction

Hyperbolic geometry appeared in the first half of the $19^{\text {th }}$ century as an attempt to understand Euclid's axiomatic basis for geometry. It is also known as a type of non-Euclidean geometry, being in many respects similar to Euclidean geometry. Hyperbolic geometry includes such concepts as: distance, angle and both of them have many theorems in common.There are known many main models for hyperbolic geometry, such as: Poincaré disc model, Poincaré half-plane, Klein model, Einstein relativistic velocity model, etc. The hyperbolic geometry is a non-Euclidian geometry. Here, in this study, we present a proof of Smarandache's cevian triangle hyperbolic theorem in the Einstein relativistic velocity model of hyperbolic geometry. Smarandache's cevian triangle theorem states that if $A_{1} B_{1} C_{1}$ is the cevian triangle of point P with respect to the triangle $A B C$, then $\frac{P A}{P A_{1}} \cdot \frac{P B}{P B_{1}} \cdot \frac{P C}{P C_{1}}=\frac{A B \cdot B C \cdot C A}{A_{1} B \cdot B_{1} C \cdot C_{1} A}$ [1].

Let D denote the complex unit disc in complex z-plane, i.e.

$$
D=\{z \in \mathbb{C}:|z|<1\} .
$$

The most general Möbius transformation of D is

$$
z \rightarrow e^{i \theta} \frac{z_{0}+z}{1+\bar{z}_{0} z}=e^{i \theta}\left(z_{0} \oplus z\right),
$$

which induces the Möbius addition \oplus in D, allowing the Möbius transformation of the disc to be viewed as a Möbius left gyrotranslation

$$
z \rightarrow z_{0} \oplus z=\frac{z_{0}+z}{1+\bar{z}_{0} z}
$$

followed by a rotation. Here $\theta \in \mathbb{R}$ is a real number, $z, z_{0} \in D$, and \bar{z}_{0} is the complex conjugate of z_{0}. Let $\operatorname{Aut}(D, \oplus)$ be the automorphism group of the $\operatorname{grupoid}(D, \oplus)$. If we define

$$
g y r: D \times D \rightarrow \operatorname{Aut}(D, \oplus), \quad \operatorname{gyr}[a, b]=\frac{a \oplus b}{b \oplus a}=\frac{1+a \bar{b}}{1+\bar{a} b}
$$

then is true gyrocommutative law

$$
a \oplus b=g y r[a, b](b \oplus a) .
$$

A gyrovector space (G, \oplus, \otimes) is a gyrocommutative gyrogroup (G, \oplus) that obeys the following axioms:
(1) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a} \cdot \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{b}=\mathbf{a} \cdot \mathbf{b}$ for all points $\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v} \in G$;
(2) G admits a scalar multiplication, \otimes, possessing the following properties. For all real numbers $r, r_{1}, r_{2} \in \mathbb{R}$ and all points $\mathbf{a} \in G$:
G1 $1 \otimes \mathbf{a}=\mathbf{a}$,
$\mathrm{G} 2\left(r_{1}+r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes \mathbf{a} \oplus r_{2} \otimes \mathbf{a}$,
G3 $\left(r_{1} r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes\left(r_{2} \otimes \mathbf{a}\right)$,
G4 $\frac{|r| \otimes \mathbf{a}}{\|r \otimes a\|}=\frac{\mathbf{a}}{\|\overrightarrow{l a}\|}$,
G5 $\operatorname{gyr}[\mathbf{u}, \mathbf{v}](r \otimes \mathbf{a})=r \otimes \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a}$,
G6 $\operatorname{gyr}\left[r_{1} \otimes \mathbf{v}, r_{1} \otimes \mathbf{v}\right]=1 ;$
(3) Real vector space structure $(\|G\|, \oplus, \otimes)$ for the set $\|G\|$ of onedimensional "vectors"

$$
\|G\|=\{ \pm\|\mathbf{a}\|: \mathbf{a} \in G\} \subset \mathbb{R}
$$

with vector addition \oplus and scalar multiplication \otimes, such that for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in G$:

$$
\begin{aligned}
& \text { G7 }\|r \otimes \mathbf{a}\|=|r| \otimes\|\mathbf{a}\| \text {, } \\
& \text { G8 }\|\mathbf{a} \oplus \mathbf{b}\| \leqslant\|\mathbf{a}\| \oplus\|\mathbf{b}\| .
\end{aligned}
$$

Theorem 1 The Hyperbolic Theorem of Ceva in Einstein Gyrovector Space Let $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} be three non-gyrocollinear points in an Einstein gyrovector space $\left(V_{s}, \oplus, \otimes\right)$. Furthermore, let \mathbf{a}_{123} be a point in their gyroplane, which is off the gyrolines $\mathbf{a}_{1} \mathbf{a}_{2}, \mathbf{a}_{2} \mathbf{a}_{3}$, and $\mathbf{a}_{3} \mathbf{a}_{1}$. If $\mathbf{a}_{1} \mathbf{a}_{123}$ meets $\mathbf{a}_{2} \mathbf{a}_{3}$ at \mathbf{a}_{23}, etc., then

$$
\begin{aligned}
& \frac{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}\right\|}{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}\right\|} \cdot \frac{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}\right\|}{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}\right\|} \times \\
& \times \frac{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}\right\|}{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}\right\|}=1,
\end{aligned}
$$

(here $\gamma_{\mathbf{v}}=\frac{1}{\sqrt{1-\frac{\|v\|^{2}}{s^{2}}}}$ is the gamma factor). (See [2, pp.461].)

Theorem 2 The Hyperbolic Theorem of Menelaus in Ein-

 stein Gyrovector Space Let $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} be three non-gyrocollinear points in an Einstein gyrovector space $\left(V_{s}, \oplus, \otimes\right)$. If a gyroline meets the sides of gyrotriangle $\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3}$ at points $\mathbf{a}_{12}, \mathbf{a}_{13}, \mathbf{a}_{23}$, then$$
\begin{aligned}
& \frac{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}\right\|}{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}\right\|} \cdot \frac{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}\right\|}{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}\right\|} \times \\
& \times \frac{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}\right\|}{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}\right\|}=1 .
\end{aligned}
$$

(See [2, pp. 463].) For further details we refer to A. Ungar's recent book [2].

2 Main result

In this section, we present a proof of Smarandache's cevian triangle hyperbolic theorem in the Einstein relativistic velocity model of hyperbolic geometry.
Theorem 3 If $A_{1} B_{1} C_{1}$ is the cevian gyrotriangle of gyropoint P with respect to the gyrotriangle $A B C$, then
$\frac{\gamma_{|P A|}|P A|}{\gamma_{\left|P A_{1}\right|}\left|P A_{1}\right|} \cdot \frac{\gamma_{|P B|}|P B|}{\gamma_{\left|P B_{1}\right|}\left|P B_{1}\right|} \cdot \frac{\gamma_{|P C|}|P C|}{\gamma_{\left|P C_{1}\right|}\left|P C_{1}\right|}=\frac{\gamma_{|A B| A B \mid} \cdot \gamma_{|B C|}|B C|}{} \cdot \gamma_{\left|C A_{\mid}\right| C A \mid}$.
Proof If we use a theorem 2 in the gyrotriangle $A B C$ (see Figure), we have

$$
\begin{equation*}
\gamma_{\left|A C_{1}\right|}\left|A C_{1}\right| \cdot \gamma_{\left|B A_{1}\right|}\left|B A_{1}\right| \cdot \gamma_{\left|C B_{1}\right|}\left|C B_{1}\right|=\gamma_{\left|A B_{1}\right|}\left|A B_{1}\right| \cdot \gamma_{\left|B C_{1}\right|}\left|B C_{1}\right| \cdot \gamma_{\left|A_{1}\right|}\left|C A_{1}\right| \text {. } \tag{1}
\end{equation*}
$$

If we use a theorem 1 in the gyrotriangle $A A_{1} B$, cut by the gyroline $C C_{1}$, we get

$$
\begin{equation*}
\gamma_{\left|A C_{1}\right| A C_{1} \mid} \cdot \gamma_{|B C||B C|} \cdot \gamma_{\left|A_{1} P\right|}\left|A_{1} P\right|=\gamma_{|A P||A P|} \cdot \gamma_{\left|A_{1} C\right|}\left|A_{1} C\right| \cdot \gamma_{\left|B C_{1}\right|}\left|B C_{1}\right| \cdot \tag{2}
\end{equation*}
$$

If we use a theorem 1 in the gyrotriangle $B B_{1} C$, cut by the gyroline $A A_{1}$, we get

$$
\begin{equation*}
\gamma_{\left|B A_{1}\right|}\left|B A_{1}\right| \cdot \gamma_{|C A|}|C A| \cdot \gamma_{\left|B_{1}\right|| | B_{1} P \mid}=\gamma_{|B P||B P|} \cdot \gamma_{\left|B_{1} A\right|\left|B_{1} A\right|} \cdot \gamma_{\left|C A_{1}\right|}\left|C A_{1}\right| . \tag{3}
\end{equation*}
$$

If we use a theorem 1 in the gyrotriangle $C C_{1} A$, cut by the gyroline $B B_{1}$, we get

$$
\begin{equation*}
\gamma_{\left|C B_{1}\right|}\left|C B_{1}\right| \cdot \gamma_{|A B| A B \mid} \cdot \gamma_{\left|C_{1} P\right|}\left|C_{1} P\right|=\gamma_{|C P| C P \mid} \cdot \gamma_{\left|C_{1} B\right|}\left|C_{1} B\right| \cdot \gamma_{\left|A B_{1}\right|}\left|A B_{1}\right| \cdot \tag{4}
\end{equation*}
$$

We divide each relation (2), (3), and (4) by relation (1), and we obtain

$$
\begin{align*}
& \frac{\gamma_{|P A|}|P A|}{\gamma_{\left|P A_{1}\right|}\left|P A_{1}\right|}=\frac{\gamma_{|B C|}|B C|}{\gamma_{\left|B A_{1}\right|}\left|B A_{1}\right|} \cdot \frac{\gamma_{\left|B_{1} A\right|}\left|B_{1} A\right|}{\gamma_{\left|B_{1} C\right|}\left|B_{1} C\right|}, \tag{5}\\
& \frac{\gamma_{|P B| \mid} P B \mid}{\gamma_{\left|P B_{1}\right|}\left|P B_{1}\right|}=\frac{\gamma_{|C A| \mid}|C A|}{\gamma_{\left|C B_{1}\right|}\left|C B_{1}\right|} \cdot \frac{\gamma_{\left|C_{1} B\right|}\left|C_{1} B\right|}{\gamma_{\left|C_{1} A\right|}\left|C_{1} A\right|}, \tag{6}\\
& \frac{\gamma_{|P C|}|P C|}{\gamma_{\left|P C_{1}\right|}\left|P C_{1}\right|}=\frac{\gamma_{|A B|}|A B|}{\gamma_{\left|A C_{1}\right|}\left|A C_{1}\right|} \cdot \frac{\gamma_{\left|A_{1} C\right|}\left|A_{1} C\right|}{\gamma_{\left|A_{1} B\right|}\left|A_{1} B\right|} . \tag{7}
\end{align*}
$$

Multiplying (5) by (6) and by (7), we have

$$
\begin{align*}
& \frac{\gamma_{\left|P A_{1}\right| P A \mid}}{\left.\gamma_{\left|P A_{1}\right|}\right|^{P A_{1} \mid}} \cdot \frac{\gamma_{|P B||P B|}}{\gamma_{\left|P B_{1}\right|}\left|P_{1}\right|} \cdot \frac{\gamma_{\left|P B_{1}\right| P C \mid}}{\gamma_{\left|P C_{1}\right|^{\left|P C_{1}\right|}}}= \\
& =\frac{\gamma_{|A B| A B \mid} \cdot \gamma_{|B C|}{ }^{|B C|} \cdot \gamma_{|C A|}|C A|}{} \quad \gamma_{\left|B_{1} A\right|^{\left|B_{1} A\right|} \cdot} \cdot \gamma_{\left|C_{1} B\right|}{ }_{\left.\left.\right|_{\left|A_{1} B\right|}\right|^{\left|C_{1} B\right|} \mid} \cdot \gamma_{\left|A_{1} C\right|} \cdot \gamma_{\left|B_{1} C\right|^{\left|A_{1} C\right|}} . \tag{8}
\end{align*}
$$

From the relation (1) we have

$$
\begin{equation*}
\frac{\gamma_{\left|B_{1} A\right|}\left|B_{1} A\right|}{} \cdot \gamma_{\left|C_{1} B\right|} C_{1} B\left|\cdot \gamma_{\left|A_{1} C\right|}\right| A_{1} C| |, \tag{9}
\end{equation*}
$$

so
$\frac{\gamma_{|P A|}|P A|}{\gamma_{\left|P A_{1}\right|}\left|P A_{1}\right|} \cdot \frac{\gamma_{\left|P B_{\mid}\right| P B \mid}}{\gamma_{\left|P B_{1}\right|}\left|P B_{1}\right|} \cdot \frac{\gamma_{|P C|}|P C|}{\gamma_{\left|P C_{1}\right|}\left|P C_{1}\right|}=\frac{\gamma_{|A B| A B \mid} \cdot \gamma_{|B C|}|B C|}{} \cdot \gamma_{\left|C A_{1}\right| C A \mid}$.

Submitted on March 05, 2010 / Accepted on March 26, 2010

References

1. Smarandache F. Eight solved and eight open problems in elementary geometry. arXiv: 1003.2153.
2. Ungar A.A. Analytic hyperbolic geometry and Albert Einstein's Special Theory of Relativity. World Scientific Publishing Co., Hackensack (NJ), 2008.
