ANDRICA-IWATA'S INEQUALITY IN HYPERBOLIC TRIANGLE

CĂtălin Barbu and Laurian-Ioan Pişcoran

(Communicated by V. Volenec)
Abstract. In this paper we proof the Andrica-Iwata's inequality for a hyperbolic triangle.

1. Introduction

In the studies by Andrica in [1] and Iwata in [4], a basic theorem is established to be a sourse of inequalities from a euclidian triangle. Iwata's theorem states that if $A B C$ is a triangle, and the segments $B C, C A, A B$ have lengths a, b, c, respectively, then

$$
\begin{equation*}
\frac{a}{b+c} \geqslant \sin \frac{A}{2} \tag{1}
\end{equation*}
$$

This result has a simple statement but it is of great interest. We just mention here few different proofs given by D. Mitrinović, J. Pečarić, V. Volenec [5], L. Balog [2], C. Ţiu [6]. In what follows we are going to present the counterpart of these results for the hyperbolic triangle.

Theorem 1. (The Cosine Rule for Hyperbolic Triangle, see [3], p. 238). Let $A B C$ be a hyperbolic triangle, and the segments have hyperbolic lengths $d(B, C)=a$, $d(C, A)=b, d(A, B)=c$, then

$$
\begin{equation*}
\sinh (b) \cdot \sinh (c) \cdot \cos (A)=\cosh (b) \cdot \cosh (c)-\cosh (a) \tag{2}
\end{equation*}
$$

Theorem 2. (The Sine Rule for Hyperbolic Triangle, see [3], p. 238). Let ABC be a hyperbolic triangle, and the segments have hyperbolic lengths $d(B, C)=a, d(C, A)$ $=b, d(A, B)=c$, then

$$
\begin{equation*}
\frac{\sinh (a)}{\sin A}=\frac{\sinh (b)}{\sin B}=\frac{\sinh (c)}{\sin C} \tag{3}
\end{equation*}
$$

Theorem 3. (The Hyperbolic Median Theorem, see [7]). If AD is a median of the hyperbolic triangle $A B C$ and the segments have hyperbolic lengths $d(B, C)=a$, $d(C, A)=b, d(A, B)=c, d(A, D)=d$, then

$$
\begin{equation*}
\cosh (d)=\frac{\cosh (b)+\cosh (c)}{2 \cosh \left(\frac{a}{2}\right)} \tag{4}
\end{equation*}
$$

Mathematics subject classification (2010): 30F45, 20N99, 51B10, 51M10.
Keywords and phrases: Hyperbolic inequality, hyperbolic triangle, Iwata's inequality.

2. Main results

In this section we proof the Iwata's inequality for a hyperbolic triangle.
THEOREM 4. Let ABC be a hyperbolic acutetriangle or a right hyperbolic triangle in A, and the segments have hyperbolic lengths $d(B, C)=a, d(C, A)=b, d(A, B)=$ c, then the following inequality holds

$$
\begin{equation*}
\frac{\sinh (a)}{\sinh (b)+\sinh (c)}<\frac{1}{\sqrt{2} \cos \frac{\varepsilon+A}{2}} \tag{5}
\end{equation*}
$$

where $\varepsilon=\pi-(A+B+C)$ is the defect of the triangle $A B C$.

Proof. If we use the sine rule (see Theorem 2) in the triangle $A B C$, we have

$$
\begin{equation*}
\frac{\sinh (a)}{\sinh (b)+\sinh (c)}=\frac{\sin A}{\sin B+\sin C}=\frac{\sin A}{2 \sin \frac{B+C}{2} \cos \frac{B-C}{2}}, \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\sinh (a)}{\sinh (b)+\sinh (c)}=\frac{\sin A}{2 \sin \frac{\pi-\varepsilon-A}{2} \cos \frac{B-C}{2}}=\frac{\sin A}{2 \cos \frac{\varepsilon+A}{2} \cos \frac{B-C}{2}} . \tag{7}
\end{equation*}
$$

Since $\sin A \leqslant 1$, we have

$$
\begin{equation*}
\frac{\sinh (a)}{\sinh (b)+\sinh (c)} \leqslant \frac{1}{2 \cos \frac{\varepsilon+A}{2} \cos \frac{B-C}{2}} . \tag{8}
\end{equation*}
$$

Because the hyperbolic triangle in acuteangle, it result that

$$
\begin{equation*}
|B-C|<\frac{\pi}{2} \tag{9}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\left|\frac{B-C}{2}\right|<\frac{\pi}{4} . \tag{10}
\end{equation*}
$$

But $\cos x$ is strictly decreasing on $(0, \pi / 2)$, then

$$
\begin{equation*}
\cos \frac{B-C}{2}>\frac{\sqrt{2}}{2} \tag{11}
\end{equation*}
$$

By (8) and (11) we obtain the conclusion.
Corollary 5. Let ABC be a hyperbolic acutetriangle or a right hyperbolic triangle in A, and the segments have hyperbolic lengths $d(B, C)=a, d(C, A)=b$, $d(A, B)=c$, then the following inequality holds

$$
\begin{equation*}
\frac{\sinh (a)}{\sinh (b)+\sinh (c)}<\frac{1}{\sqrt{2} \cos \frac{A}{2}} . \tag{12}
\end{equation*}
$$

Proof. We have $\frac{\varepsilon+A}{2}=\frac{\pi}{2}-\frac{B+C}{2}$, and because $\cos x$ is strictly decreasing on $(0, \pi / 2)$, then

$$
\begin{equation*}
\cos \frac{A}{2}>\cos \frac{\varepsilon+A}{2} \tag{13}
\end{equation*}
$$

By (5) and (13) we obtain the conclusion.
COROLLARY 6. Let ABC be a hyperbolic acutetriangle or a right hyperbolic triangle in A, and the segments have hyperbolic lengths $d(B, C)=a, d(C, A)=b$, $d(A, B)=c$, then the following inequality holds

$$
\begin{equation*}
\sinh (a)<\sinh (b)+\sinh (c) \tag{14}
\end{equation*}
$$

Proof. Using the fact that $\cos \frac{A}{2}>\frac{\sqrt{2}}{2}$ in the previous result we obtain

$$
\frac{\sinh (a)}{\sinh (b)+\sinh (c)}<1
$$

and we are done.
COROLLARY 7. Let $A B C$ be a hyperbolic acutetriangle and the segments have hyperbolic lengths $d(B, C)=a, d(C, A)=b, d(A, B)=c$, then the following inequality holds

$$
\begin{equation*}
\frac{\sinh (a)}{\sinh (b)+\sinh (c)}<\frac{1}{\cos \frac{\varepsilon}{2}} \tag{15}
\end{equation*}
$$

Proof. From (5), we have

$$
\begin{equation*}
\frac{\sinh (a)}{\sinh (b)+\sinh (c)}<\frac{1}{\sqrt{2}\left(\cos \frac{\varepsilon}{2} \cos \frac{A}{2}-\sin \frac{\varepsilon}{2} \sin \frac{A}{2}\right)} \tag{16}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{\sinh (a)}{\sinh (b)+\sinh (c)}<\frac{1}{\sqrt{2} \cos \frac{\varepsilon}{2} \cos \frac{A}{2}} \tag{17}
\end{equation*}
$$

Analogue with (11) we get

$$
\begin{equation*}
\frac{1}{\cos \frac{A}{2}}<\sqrt{2} \tag{18}
\end{equation*}
$$

By (17) and (18) we obtain the conclusion.
Corollary 8. Let ABC be a hyperbolic acutetriangle, and the segments have hyperbolic lengths $d(B, C)=a, d(C, A)=b, d(A, B)=c$, then

$$
\begin{equation*}
\frac{\sinh (a)}{\sinh (b)+\sinh (c)}+\frac{\sinh (b)}{\sinh (a)+\sinh (c)}+\frac{\sinh (c)}{\sinh (b)+\sinh (a)}<\frac{3}{\cos \frac{\varepsilon}{2}} \tag{19}
\end{equation*}
$$

Corollary 9. Let ABC be a hyperbolic triangle, and the segments have hyperbolic lengths $d(B, C)=a, d(C, A)=b, d(A, B)=c$, then

$$
\begin{equation*}
\frac{\sinh (a)}{\sinh (b)+\sinh (c)}+\frac{\sinh (b)}{\sinh (a)+\sinh (c)}+\frac{\sinh (c)}{\sinh (b)+\sinh (a)} \geqslant \frac{3}{2} . \tag{20}
\end{equation*}
$$

Proof. If we use the inequality

$$
\begin{equation*}
\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y} \geqslant \frac{3}{2}, \tag{21}
\end{equation*}
$$

where $x, y, z>0$, for the positive numbers $\sinh (a), \sinh (b)$, and $\sinh (c)$, then we obtain the conclusion.

Remark 10. The equality

$$
\begin{equation*}
\frac{\sinh (a)}{\sinh (b)+\sinh (c)}+\frac{\sinh (b)}{\sinh (a)+\sinh (c)}+\frac{\sinh (c)}{\sinh (b)+\sinh (a)}=\frac{3}{2} \tag{22}
\end{equation*}
$$

holds if and only if $A B C$ is a equilateral triangle.

Proof. The relation (22) holds if and only if $\sinh (a)=\sinh (b)=\sin (c)$, so $a=$ $b=c$.

THEOREM 11. Let ABC be a hyperbolic triangle, and the segments have hyperbolic lengths $d(B, C)=a, d(C, A)=b, d(A, B)=c$, then

$$
\begin{equation*}
\cosh (b)+\cosh (c)>2 \cosh \left(\frac{a}{2}\right) \tag{23}
\end{equation*}
$$

Proof. If $A D$ is a median of the hyperbolic triangle $A B C$, and $d(A, D)=d$ (see Figure 1), then from Theorem 3 we have

$$
\begin{equation*}
\cosh (d)=\frac{\cosh (b)+\cosh (c)}{2 \cosh \left(\frac{a}{2}\right)} . \tag{24}
\end{equation*}
$$

Figure 1
Figure 1.
Because the function $\cosh x>1$, for all x, results

$$
\begin{equation*}
\frac{\cosh (b)+\cos (c)}{2 \cosh \left(\frac{a}{2}\right)}>1 \tag{25}
\end{equation*}
$$

and the conclusion follows.
THEOREM 12. If $A D$ is a median of the hyperbolic triangle $A B C$ and the segments have hyperbolic lengths $d(B, C)=a, d(C, A)=b, d(A, B)=c, d(A, D)=d$, then

$$
\begin{equation*}
\sinh (d)>\frac{\cosh (b)-\cosh (c)}{2 \sinh \left(\frac{a}{2}\right)} \tag{26}
\end{equation*}
$$

Proof. If we use the hyperbolic triangle inequality in the triangle $A D C$, we have $d+\frac{a}{2}>b$. Because the function $\cosh x$ is increasing on $(0, \infty)$, then

$$
\begin{equation*}
\cosh \left(d+\frac{a}{2}\right)>\cosh b \tag{27}
\end{equation*}
$$

or

$$
\begin{equation*}
\cosh (d) \cdot \cosh \left(\frac{a}{2}\right)+\sinh (d) \cdot \sinh \left(\frac{a}{2}\right)>\cosh b \tag{28}
\end{equation*}
$$

From the relations (4) and (28) we obtain

$$
\begin{equation*}
\frac{\cosh (b)+\cos (c)}{2}+\sinh (d) \cdot \sinh \left(\frac{a}{2}\right)>\cosh b \tag{29}
\end{equation*}
$$

the conclusion follows.
COROLLARY 13. If $A D$ is a median of the hyperbolic triangle $A B C$ and the segments have hyperbolic lengths $d(B, C)=a, d(C, A)=b, d(A, B)=c, d(A, D)=d$, then

$$
\begin{equation*}
2 \sqrt{\sinh \frac{b+c}{2}\left|\sinh \frac{b-c}{2}\right|}-\sinh \left(\frac{a}{2}\right)<\sinh (d)<\frac{1}{\sqrt{2} \cos C}\left[\sinh \left(\frac{a}{2}\right)+\sinh (b)\right] \tag{30}
\end{equation*}
$$

Proof. According to the inequality (12), for the triangle $A D C$, we can write

$$
\begin{equation*}
\frac{\sinh (d)}{\sinh \left(\frac{a}{2}\right)+\sinh (b)} \leqslant \frac{1}{\sqrt{2} \cos C} \tag{31}
\end{equation*}
$$

and the right inequality in (32) is proved. For the left inequality to (30), we using the arithmetic mean-geometric mean inequality for the positive numbers $\sinh (d)$ and $\sinh \frac{a}{2}$ we get

$$
\begin{equation*}
2 \sqrt{\sinh (d) \cdot \sinh \left(\frac{a}{2}\right)} \leqslant \sinh (d)+\sinh \left(\frac{a}{2}\right) . \tag{32}
\end{equation*}
$$

Now, we are using the inequalities (26) and (32), we get

$$
\begin{equation*}
\sqrt{2|\cosh (b)-\cosh (c)|}<\sinh (d)+\sinh \left(\frac{a}{2}\right) \tag{33}
\end{equation*}
$$

Because

$$
\begin{equation*}
\cosh (b)-\cosh (c)=2 \sinh \frac{b+c}{2} \sinh \frac{b-c}{2} \tag{34}
\end{equation*}
$$

from (33) result

$$
\begin{equation*}
2 \sqrt{\sinh \frac{b+c}{2}\left|\sinh \frac{b-c}{2}\right|}<\sinh (d)+\sinh \left(\frac{a}{2}\right) \tag{35}
\end{equation*}
$$

the conclusion follows.
THEOREM 14. Let ABC be a hyperbolic triangle, and the segments have hyperbolic lengths $d(B, C)=a, d(C, A)=b, d(A, B)=c$, then

$$
\begin{equation*}
\sinh (a) \geqslant \sqrt{\cosh (a)-\cosh (b-c)} \tag{36}
\end{equation*}
$$

Proof. Inequality (36) is equivalent with

$$
\begin{equation*}
\sinh (a) \geqslant \sqrt{\sinh (b) \cdot \sinh (c)-\cosh (b) \cdot \cosh (c)+\cosh (a)} \tag{37}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\sinh ^{2}(a) \geqslant \sinh (b) \cdot \sinh (c)-\cosh (b) \cdot \cosh (c)+\cosh (a) \tag{38}
\end{equation*}
$$

From (2) and (38) we get

$$
\begin{align*}
\sinh ^{2}(a) \geqslant & \sinh (b) \cdot \sinh (c)-\cosh (b) \cdot \cosh (c) \tag{39}\\
& +\cosh (b) \cdot \cosh (c)-\sinh (b) \cdot \sinh (c) \cdot \cos A
\end{align*}
$$

or

$$
\begin{equation*}
\sinh ^{2}(a) \geqslant \sinh (b) \cdot \sinh (c)(1-\cos A) . \tag{40}
\end{equation*}
$$

This inequality is equivalent to

$$
\begin{equation*}
\frac{\sinh (a)}{\sinh (b)} \cdot \frac{\sinh (a)}{\sinh (c)} \geqslant 1-\cos (A) . \tag{41}
\end{equation*}
$$

If we use the hyperbolic law of sines (see Theorem 2), inequality (41) becomes

$$
\begin{equation*}
\frac{\sin A}{\sin B} \cdot \frac{\sin A}{\sin C} \geqslant 1-\cos A \tag{42}
\end{equation*}
$$

or

$$
\begin{equation*}
1-\cos ^{2} A \geqslant \sin B \cdot \sin C \cdot(1-\cos A) . \tag{43}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
(1-\cos A)(1+\cos A) \geqslant \sin B \cdot \sin C \cdot(1-\cos A) \tag{44}
\end{equation*}
$$

and it follows that

$$
\begin{equation*}
1+\cos A \geqslant \sin B \cdot \sin C, \tag{45}
\end{equation*}
$$

and we are done.
REMARK 15. Using the formula

$$
\begin{equation*}
\cosh (b)-\cosh (c)=2 \sinh \left(\frac{b+c}{2}\right) \sinh \left(\frac{b-c}{2}\right) \tag{46}
\end{equation*}
$$

in the previous result we can write

$$
\begin{equation*}
\sinh (a) \geqslant \sqrt{2 \sinh \left(\frac{a+b-c}{2}\right) \sinh \left(\frac{a+c-b}{2}\right)} \tag{47}
\end{equation*}
$$

and the similar relation for $\sinh (b)$ and $\sinh (c)$.
Corollary 16. Let ABC be a hyperbolic triangle and the segments have hyperbolic lengths $d(B, C)=a, d(C, A)=b, d(A, B)=c$, then the following inequalities hold

$$
\begin{equation*}
2 \sqrt{2} \prod_{\text {cyclic }} \sinh (s-a) \leqslant \prod_{\text {cyclic }} \sinh (a)<\frac{\prod_{\text {cyclic }}[\sinh (a)+\sinh (b)]}{2 \sqrt{2} \prod_{\text {cyclic }} \cos \frac{A}{2}} \tag{48}
\end{equation*}
$$

where s is the semiperimeter of the triangle $A B C$.
Proof. The left inequality results by (47), and the right inequality is a simple direct consequence of the relation (12).

REFERENCES

[1] D. Andrica, O inegalitate in triunghi şi aplicaţiile acesteia, Gazeta Matematică, Seria B, Bucureşti, 1 (1986), 2-4.
[2] L. Balog, Gazeta Matematică, Seria B, Bucureşti, 9 (1989), p. 334.
[3] H. S. M. Coxeter, Non-Euclidean geometry, M.A.A., 1998.
[4] S. Iwata, Encyclopedia of Geometry (Japanese), Tokyo, 1971, Vol. 5, p. 345.
[5] D. S. Mitrinović, J. E. PečArić, V. Volenec, Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, 1989, p. 198.
[6] C. I. Ţıu, Aplicaţii în trigonometrie, Ed. Academiei, 1992, p. 183.
[7] W. Stothers, Geometry Pages, http://www.maths.gla.ac.uk/.

Laurian-Ioan Pişcoran North University of Baia Mare

