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AND IOAN SCHIOPU

ABSTRACT. In this paper we introduce a new type of construction of (a, §)-metrics ob-
tained from Laplace transform on Bessel functions. Some properties of this metrics are
studied. The variational problem and the main scalar of this new metric will be studied
also in this paper.

1. PRELIMINARIES

Let M be a n-dimensional C* manifold. Denote by TyM the tangent space at x € M,

by TM = TxM the tangent bundle of M, and by TMy = TM \ {0} the slit tangent
y g y g

xeM
bundle on M. A Finsler metric on M is a function F : TM — [0,00) which has the

following properties:
(i) Fis C* on TMy;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM;
(iii) For each y € T, M, the following quadratic form g, on Ty M is positive definite,

1 92
gy(u,v) == FET [F*(y + su + tv)] [s =0, u,0 € TeM.

Let x € M and F, := F|r,m. To measure the non-Euclidean feature of F,, define C, :
M ®TyM® T.M — R by

Cy(u,v,w) := ;;t [g%tw(u,v)} lt=0, u,v,w € TM.
The family C := {C,} eTrpm, is called the Cartan torsion. For y € TyMy, define mean
Cartan torsion I, by I,(u) := ILi(y)u', where I; := g/*Cjj. By Diecke Theorem, F is
Riemannian if and only if I, = 0. There are many connections in Finsler geometry
(see [24]). In this paper, we use the Berwald connection and the h- and v- covariant
derivatives of a Finsler tensor field are denoted by symbols ”|” and ”,” respectively. The
horizontal covariant derivatives of I along geodesics give rise to the mean Landsberg
curvature J, (1) := Ji(y)u', where J; := Ljisy°. A Finsler metric is said to be weakly
Landsbergian if ] = 0. For more details on Finsler metrics; Cartan torsion and Landsberg
curvature please see [1] and [22].
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Given a Finsler manifold (M, F), then a global vector field G is induced by F on TM,,

which in a standard coordinate (x,y') for TM is given by G = yi% - 2G"(x,y)aiyi,
where
i1 a[(F?) 9(F?)
C= 28 [axkayly - o ]' y € M.

The G is called the spray associated to (M, F). In local coordinates, a curve c(t) is a
geodesic if and only if its coordinates (c’(t)) satisfy & +2G'(¢) = 0.

For a tangent vector y € TxMy, define B, : TM @ TyM @ TM — TyMand E, : T,M ®
TxM — Rby B, (u,v,w) := By (y)ukawl%h and E, (u,0) := Ej(y)w/o* where
3Gl 1

Ik Qyigykayt jk == P jlm
The B and E are called the Berwald curvature and mean Berwald curvature, respectively.
Then F is called a Berwald metric and weakly Berwald metric if B = 0 and E = 0,

respectively.
The S-curvature was introduced by Z. Shen in [26], in the following way:

Definition 1.1. ([26]) Let V be an n-dimensional real vector space and F be a Minkowski norm
on V. For a basis {e;} of V, let:

B Vol (B")
~ Vol {y' € R"|F(y'e;) < 1}

where Vol represent the volume of a subset in the standard Euclidean space R" and B" is the open
ball with radius 1. The quantity: T(y) = lnivdet(g”(y)), y € V — {0}, is called distorsion of

0]
(V,F). Let (M, F) be a Finsler space and T(x,y), the distorsion of the Minkowski norm Fy on
TxM. Fory € TxM — {0}, let T(t) be the geodesic with T(0) = x and t(0) = y. Then the

quantity

0F

d .
S(xy) = 4 [t(a(t),o(t))] li=o, (1.1)
is called S-curvature of the Finsler space (M, F).

Remark 1.1. A Finsler space (M, F) is said to have almost isotropic S-curvature if there exist a
smooth function ¢(x) on M and a closed 1-form n such that:

S(x,y) = (n+1) (c(x)F(y) +1(y)), (1.2)
xeM,yeTM

Remark 1.2. If, in (2.2), we have 1 = 0, then (M, F) is said to have isotropic S-curvature. If
n = 0and c(x) is constant, then (M, F) is said to have constant S-curvature.

The S-curvature of an G-invariant homogeneous (a, f)-metric F = a¢(s), can be ex-
pressed in the following way ([8]):

S = <2‘I’ - l{]/c((l;))> (ro+s0) — (x_l% (7’00 - 2(szo) (1.3)
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where
B fon(sint)”*ZT(bcost)dt‘ B 2 (e 2 o,
F0) = g T = 90 =) (=) + (2= ]
_ ¢ 2 Q.
Q_4>—s<p"A 14+sQ+ (1*+s2)Q; ¥ = A
®=—(Q-sQ){nA+1+sQ} — (b* —5*)(1+sQ)Q” (1.4)

P S S N RN B I B S
s;j = b'sij; sj=a"si; so=siy’; sy =5y’ roo = riiy'y’; rj = b'rij.

The Busemann-Hausdorff volume form dVpy = oF(x)dx'dx? - - - dx", is defined by:
Vol (wy,)

Vol {yi e RIF(x,yi ) < 1}'

Then, the S-curvature is defined by:

S() = o7 (59) = 57 () 15)

or =

where y = v 3 9 |, € T, M. For more details please see [8].

Lemma 1.1. ([8]) Let F = a¢p(s); s = g, be a non-Riemann («, B)-metric on a manifold M of
dimension n > 3 and B = ||Bx||,. Suppose that F is not a Finsler metric of Randers type. Then
F is of isotropic S-curvature, S = (n + 1)cF, if and only if one of the following holds:

o B satisfies: rjj = €(b*a;; — bibj), sj = 0 where € = €(x) is a scalar function and
¢ = ¢(s) satisfies: & = —2(n + 1)k =, With k = const. In this case, S = (n +1)cF,

with ¢ = ke.
e Bsatisfies rjj = 0; s; = 0. In this case, S = 0.

The Landsberg curvature is expressed in [27] and is given by:
Lijk = % {hlh]Ck + h]hkCZ + hlhkC] + 3E1'Tjk + 3E]le + 3EkTi]'} (1.6)
where:
hi = ab; —sy; Tjj = (xzaij —Vi¥;
C = (X41’00 + Y40(So) ]’l,‘ + 3AD;
E, = <X61’00 + Y(,IXS()) h; + 3]1D1'
D; = o (SiO +I'ryp + HIXSZ') — (FVOO —+ HDCS()) yi

Xy = 21? {—28Q" +3(Q —sQ)Q" +3(b* —s*)(Q")*} (1.7)
Xo = ﬁ {(Q—35Q)* +2[2(s +1°Q) — (1 = *)(Q —sQ)] Q"}
Y, = 20X, + 3Q;Q//
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Yy = —2QXs + (Q=s0)0 _SAQ/)QI
A=-Q" u= —%(Q—SQ'); = %; 1= —%-
Remark 1.3. The Landsberg curvature for an («, B)-metric is given in [29] in the following way:
= 5an <bff252 3 (4 1D(Q Q)] (o so)het
72 i 2 [‘1’1 + si} (roo — 20 Qso)h; + a [—th’sohi + aQ(a®s; — y;50)+ (1.8)

P
DCzASz’O + DCZ(rZ-O —2aQsp) — (roo — ZaQso)yi] A>
where:

/
Y, = Vb2 — SZA% [”bz_SZ]

A3
hi = ab; —sy; §; = ayy
® = —(Q—sQ)(nA+1+5Q) — (b* —*)(1+sQ)Q". (1.9)
For more details please see [29].

Remark 1.4. Acording to [11], the S-curvature of the («, B)-metric F = a¢p(s), can be computed
as follows:

§={Q —2¥0Qs —2[¥QJ (b* — %) —2(n +1)QO + 21} s+ (1.10)
2{¥ + A rg+a H{(P* =Y + (n+ 1)@} roo,

where A = — Zg;fé’g) and

-1

u(b) = (1.11)

Here, T represent the Euler function.

\/Er(”zl)[ 7 sin""29 ]
r(%) 0o ¢"(bcosb)

Remark 1.5. The mean Cartan torsion of an («, B)-metric is given by:

o S(P// 354)// _ (b2 _ 52)4)/// _
=5+ (” + 1)7 - (n - 2)4) _ S‘P/ - (4) _ S(P/) + (bz _ 52)4)//] - (1.12)

) _ /
—W(wbi — sY;).

For more details please see [29].
Another important result is the following one:

Lemma 1.2. ([1])Let F be an («, B)-metric. Then F is locally Minkowskian if and only if a is flat
and bilj = 0, (that is B parallel with respect to «, rij =0;s; = 0).

Next, we will present some remarks regarding the Lagrange spaces in Finsler geometry:
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Definition 1.2. [12] A Lagrange space is a pair L" = (M, L(x,y)) formed by a smooth real, n-
dimensional manifold M and a reqular differentiable Lagrangian L(x,y), for which the d-tensor
field gi; has constant signature over the manifold TM.

From [31] and [16], Finsler spaces endowed with («, B)-metrics were applied succefully
to the study of gravitational magnetic fields. Other important results from [12] are pre-
sented as follows:

Let F" = (M, F(x,y)) be a Finsler space. It has an («, §)-metric if the fundamental func-
tion can be expressed in the following form: F(x,y) = F (a(x,y), B(x,y)), where F is a
differentiable function of two variables with: a?(x,y) = a;;(x)y'y’; B(x,y) = b;j(x)y'.

a = a;j(x)dx'dx/ is a pseudo-Riemannian metric on the base manifold M and b;(x)dx’

is the electromagnetic 1-form on M. As we know from , if we denote by L" = (M, L) a
1 _°L

Lagrange space; the fundamental tensor g;;(x,y) of L" is: gj; = 23y and this tensor

can be written as follows for (&, §)-Lagrangians:
8ij = paij + pobibj 4+ p—1 (b, +b;V;) + -2

d
where b; = 5,,)/- aljy = zxaa;‘
0; 00; P—1; P—2 are invariants of the space L".

Here, p; po; p—1; p—2 are given by (see [12]):

1 1
p= ﬂLa;PO = EL/s/s;

1 1 1
oL. 82L L
where L, = aa, Lg = 9’ Law = 575 Lpp = ﬁz 5 and Log = 0B

Shimada and Sabdu in [28], have proved that the system of covectors {b;, );} is indepen-
dent. The following formulae holds (see [12]):

1 0L 1
Vi= ooy pbi+pYi o1 = 5Lp;
9p1
57— Ob + 13)117- 1b + Zyl
ay =P p— y [ p—

L S o N M) (1.14)

dy! ! ayl
dp_
=2 — v sbi+r_sd),
ay

withr_ 1 = %Lﬁﬁﬁ, r-p = Lﬁﬂﬁ/ r-3 = % (leﬁ - %L“ﬁ) and

_ 1
r—4 = 3,3 (szvux Loax + = Loc)
The Cartan tensor in such of space can be computed as follows(see [12]):

1
2Cij = % {P—lﬂzjbk +p—28ii Vi + Sr-1bibjbe + r-2bibj
ij,

1
+7-30; YV + 37—4yiyjyk}/ (1.15)
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where ) is the cyclic sum in the indices 7, j, k.
The variational problem for Finsler spaces endowed with («, f)-metrics is an important
oL

topic in Finsler geometry. For such spaces, the Euler-Lagrange equations E;(L) = £ —

% <§ yL ) =0, can be give in the following way:

Ei(L) = E;(a?) +2’;1E1-(5) 20y (1.16)

The following result is very important:

Theorem 1.1. ([12]) In the natural parametrization, t = s; the Euler-Lagrange equations of the
Lagrangian L(«, B), are given by:

dx!

(2 Plr (Vi — - i — X
Ei(a®) +2 ; Fi(x)y =0; y I (1.17)
Remark 1.6. If we use the following equations E;(B) = Fj(x) de,
ob;  9b;
Fij =55 = 54 = b — b
then (5) can be rewritted in the following way:
()4 2P (b — b _ ax
Ei(a?) 42 ; (b]‘l bl‘]) 0y = (1.18)

Another important result obtained by [32], is the following one:
Theorem 1.2. ([32]) Let F = a¢p(s), s = g be an («, B)-metric on an n-dimensional manifold
M",(n > 3), where & = \/ajjy'y/ is a Riemannian metric and p = b;(x)y" # 0 is an 1-form
on M. Suppose that F is not Riemannian and ¢'(s) # 0; ¢'(0) # 0; B # 0. Then F is a locally
dually flat on M if and only if a, B and ¢ = ¢(s), satisfy:

[ ] 1.510 = %(‘391 — Gbl),

[ 2.7’00 = %9,5 + [9 + %(bZG — lel)] (Xz + %(31{2 —2— 3k3b2)9ﬁ2,

e 3.GL =120+ (3ks — )9,8] y' + 1(0) — b + TkaT Y,

o 4.7 [s(ka — k3s?) (99" — s¢ — sp¢”) — (9" + ¢9") + krp(¢p — 5¢")] =

where T = T(x) is a scalar function; § = 0;(x)y' is an 1-form on M, 6' = a'"@,,,

— . — H/(O). — 1 " ! o 2 "
b = TH0)ike = 5 075ks = 572 [3Q(O)TT(0) = 6T1(0)* — QOII"(0)], (1.19)
i Q= g2t = 05

Finally, we W111 recall the following;:

Theorem 1.3. ([25]) The function F = ucgb(g) is a Finsler metric for any « = \/azy'y/ and
B = by, with ||Bx||, < bo if and only if ¢ = ¢(s) is a positive C* function on (—by, by),
satisfying the following conditions:
9(s) = s¢'(s) + (12 =s%)¢"(s) > 0, |s| <b <y
$(s) —s¢'(s) >0, |s| < bo
47(8) >0, |S| < by
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2. MAIN RESULT

2.1. Construction of a new type of («, f)-metrics. In this section we will construct a
new type of (a, B)-metrics, using the Laplace transform. As we well know, the Laplace
transform is used in electrotechnics and can be defined by F(s) = [;° e~ f(t)dt, if such
an integral exists. Let’s recall now the Bessel functions which can are defined as follows:

00 (_1)nxp+2n
= . 2.1
]P(x) §2p+2nn!r(p+n+1) ( )
For the case p = 1, easily can be obtained the following Bessel function:
B 00 (_1)nx2n+1
jl(x) _r;zZn_A,_]n!(n_'_l)!‘ (2'2)

This Bessel function J;(x) is very important in physics because describe the Fraunhofer
diffraction phenomena in the diffraction theory of modern physics. Diffraction phenom-
ena can be described easily as been any deviation from geometrical optics that result
from an obstruction of a wavefront of light. Fraunhofer diffraction appear when both
the incident and diffracted waves are effectively plane. This occurs when the distance
from the source to the aperture is large so that the aperture is assumed to be uniformly
illuminated and the distance from the aperture plane to the observation plane is also
large. So, the Fraunhofer diffraction pattern for a uniformly illuminated circular aper-
ture can be described using the Bessel function J;(x). Now, for this function, it can be
obtained after simple computations, the Laplace transform:

LOh() =1-

s
s2+1

= ¢(s). 23)

Using this function ¢(s), we will construct the attached («, f)-metric. This new metric

1S:
P

As we know from literature, recently, some progress was done for the study of Bessel

and Fourrier transforms, for example, please see [15].
We will investigate in the following lines the new metric (2.4).

3. THE VARIATIONAL PROBLEM FOR THE (IX,‘B)-METRIC WHICH ARISE FROM LAPLACE
TRANSFORM

As we have seen in the previous section, we can construct a new («, f)-metric using
the Laplace transform for the Bessel function of the first kind J;(x). In this section we
will find the Main Scalar for this new metric and also we will investigate the variational
problem. The fundamental function attached to the new metric is:

2
L, B) = ((x - \/;iiﬁJ . (3.1)
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Next, we will compute the following:

o (VR -p) (@) -p)

aL(“I‘B) (0‘2_'_’82)2
—2a* (/o + B2 — B
LA l CLibi)
i (a2 + p2)
02 4B +6aB? —2\/a2 + B2 (—a?B2+2p%) B+2a°
WL((X' )= (“2+52)3
92 —2u ((—4/33 — (a? +52)3/2 +3 \/mﬁz) 02 + 202 (a2 +,52)3/2)
3aap (P = @1 )
9 20 (“2—3ﬁ2+3ﬁ\/m)
aTﬁzL(zx, ) = T
3 /
o 2 TR (4 )
(a% + B?)
608 (VAT T2~ B) (a2~ + B/ T )
Po(a, p) = -
(2% + B)
2wt (a2 - ) (687 — (a2 + 1)V 13 /a7 § RR)
P_1(a, p) = i
(a2 + )
st (VT p)
@)
2
-2 2_|_ 2 _
patn ) - VP )

(a2 + p2)*
x <—4,B6 — 2842 — 6atBE o+ \fa2 + B2 (—a4 +4,B4) B —2a6> .
Using the above computations and also the the results from [13], the Main Scalar for the

studied metric (2.3), with the fundamental function (3.1), can be easily obtained replac-
ing P, P_1, P_; and respectively P in

dh:<u2m>4ngf}, 62

Here € represent the signature of the space, 7> = b?a® — % and T, = ?)Tg'
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Theorem 3.1. The mean Cartan torsion of the («, B)-metric (2.4), is given by:
9y &2
Il-:laal.[—(l—I—n)(\/sz—kl—s) (s*+1)-3 (n 2)53/2 —
20y (2+1) (2 +1)"7 =)
—st + 452 +4b%s% — b2 }
(s+1) ((s2 +1)72 -5 — 453+ 3sb2>

(3.3)
3

Proof. The proof of this theorem is immediate from (1.12) and using some computations
in Maple we get the asertion of the theorem. O

Now we will proof that this new metric (2.4), is a Finsler metric. In this respect, we will
use Theorem 1.3 and we obtain the following:

Theorem 3.2. The metric (2.4) is a Finsler metric, because the following conditions holds:
$(s) —s¢'(s) + (b* —5%)¢"(s) > 0, |s| <b <bo
p(s) —s¢'(s) >0, |s| <bo
$(s) >0, |s| <bo
for any o = \/W and B = by, with ||Bx||, < bo and ¢ = ¢(s) is a positive C* function
on (—by, by).

Proof. We will investigate all this conditions one by one:
The first one,

9(s) —s¢'(s) + (1P — ))¢"(s) > 0, [s| <b < by
is equivalent after computations with
(s2+1) ((s2 FVE 1 53) +3s(02 — 82)
(s2+ 1)%

and is easy to observe that this condition holds for any [s| < b < by.
The second one,

>0

¢(s) —s¢'(s) > 0, |s| <bo
is equivalent with
(s> +1)Vs?+1—s° =0
(s241)2
and is easy to observe that this condition holds for any |s| < by.

Finally, the third condition is equivalent with
Vs?+1—s
s2 41

and is easy to observe that this condition holds for any |s| < b.

>0
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Next, we will compute the S-curvature for this metric because as we know in Finsler
geometry, the S-curvature of an (&, §)-metric has an very important role. Now, we will
compute for the («, B)-metric (2.4), with ¢(s) =1 — \/si? the following:

Qs) = — ((52 n 1)3/2 _53)
14255 —25%s2+ 145" 4352 —3b%s? —5vs2+1+3sh?*V/s2+1

-1

A(s) 3 ;
(Ve HI2 4+ Vs 1 - s)
s(VeTHT—s)
Y(s)=3/2

14286 —255/s2 41484 +352 — 35252 —51/62 +- 1+ 3sb2V/s2 +1°
—4
O(s) = (252 +14sVs2+ 1) (54ns7+54 V82 + 1ns+

(20 +36nb* + 621 + 18b%) 5° + \/s2 + 1 (16 + 37n + 36nb* + 18b*) s*+
(23+23n+ 150 +27nb?) s° + /s + 1 (1267 + Inb* + 14 + 11n) s>+

(3n+3+3nb* —3b*)s— (36> +n+1) 52+1>,~ (3.4)

V2 +1(4s> +1) — 453 '
2(14 250+ 54 4+ 352 — 3b252 — (255 + 5 — 3sb2)\/s2 + 1)
-2
s3 ! 5/2 -3
_ 2 _ = 2 543 2\ (.2
T(s) (\/s +1 s) (1 (52—1—1)3/2) ((s +1) s> —4s —|—3sb>(s +1) .
Using all the above relations (3.4), and also Remark 1.4, we are ready now to formulate

O(s) = —

Theorem 3.3. The S-curvature for the metric (2.4), can be computed by

S={Q —2¥Qs —2[¥Q] (1* —5*) —2(n +1)QO + 2A} sp+ (3.5)
2{Y+A}ro+a H{(t* = )Y + (n+1)®} roo,
where A = —% and
_ VA () [ T sin"20 17
ub) = r(%) 0 (P”(bcos@)] ' (36)

Here,
Q —2¥Qs —2[¥Q]'(b* —s*) —2(n +1)QO® +2A =

(—12¢7 4+ 35° + (186> —9) s> — 3s) V/s2 + 1 + 1258 + 3s® + (—18b + 6) s* + (—9b* 4 3) s?
. _
<s3 —(s2+1)Vs? + 1) <—256 —s* =352 — 1+ /524 1(2s5 + 5 — 3sb?) + 3b252>
(855 + (10 = 1267) * + (662 + 8) 5% + 65° +2) V57 +1) A

2
(53 —(s2+1)Vs? + 1) (—256 —s*—3s2 -1+ Vs> +1(2s° + s —3sb?) + 3b252)
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(125 (—2/3s8 — 5/655 + (—1+ b2) s* + (b2 —1/2)s2 — 1/6+ 1/2?)) A
2
(53 —(s24+1)Vs?+ 1) (—256 —s* =352 — 1+ /52 +1(2s5 + 5 — 3sb?) + 3b252)

(—1+(—4n—-4)s> —n)Vs2+1+12 (1/3n+1/3)s>
2
<s3 —(s2+1)Vs? + 1) (—256 —s* =352 — 1+ /52 +1(2s5 + 5 — 3sb?) —|—3b252)

3(1 — /s 4+ 1(3s% + 25 — 11s° + 3287 +2857) — 32510 — 44 6%)

¥(s) = g
2 <s3 —(s2+1)Vs? + 1) (—256 — 5% —3s2 —1+/s2+1(2s5 + 5 — 3sb2) + 3b252>

Next, we can reformulate Theorem 3.1 forthe computation of the mean Cartan torsion
for the (a, B)-metric (2.4), but this time using the above Remark 1.5.

Theorem 3.4. The mean Cartan torsion for the («, B)-metric (2.4), with ¢(s) = 1 — \/Sjil, is

given by:
| (—54ns® + (—18 — 36n)b* — 16 — 37n)+/s2 + 1 N
i = 2
2 (252 +1+ s+ 15) (—\/s2 +1+ s) (s24+1) M(s)
((m9n—12)p* —14—11n) s> —n+30* —1) Vs2 +1
2
2(224+ 1+ Ve +1s) (—Ve+145) (s2+1) M(s)
54ns” +36 (n + 3) b%s® + 205> + 62ns® + (15 + 27n)bs> N
2
2 (252 N R/ 15) (—\/@Jr s) (52 + 1) M(s)
23(n +1)s® +s3((15 +27n)b* +23(n + 1))
2
2 (252 +14+Vs?2+ 1s> (—\/52 +1+ s) (s24+1) M(s)

where
M(s) = (—1 —25% 4+ (25° + 5 — 3sb?) /52 + 1 — s* — 35 + 3b%s> — 35b2> :
To obtain the proof of this theorem we have made all the computations in Maple 13.

Theorem 3.5. Let F = a¢(s), s = ¢ be the («, B)-metric on an n-dimensional manifold

M",(n > 3), given in (2.4), with ¢(s) = 1 — \/ﬁ, where & = 1/gz-]-yiyf is a Riemann-
ian metric and B = b;(x)y' # 0 is an 1-form on M. Knowing that F is not Riemannian and
¢'(s) # 0; ¢'(0) # 0; B # 0, then F is a locally dually flat on M if and only if w, p and
¢ = ¢(s), satisfy:

o 1s, = 3(B6 —6by),

o 2rgo = 208+ [0+ 3(b%0 — 6,0")] a® + 1 (—14 4 120%)62,
e 3.G\ =120+ (3k; —2)0B]y' + 3(6' — b )a® + SksT BV,
o 4 (—145*4+145°V/s2+1-1252 417 5v/52+1+6 ) s2 _

(52—5—1)3 !
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where T = T(x) is a scalar function; 0 = 0;(x)y' is an 1-form on M, 6' = a'™o,,,

k1=H<0>;k2=g((§));k3 s BQ O (0) — 6110 - QO ()], - 67
and Q = s¢" = Jf’(;tfi)

Proof. We use Theorem 1.2, where we compute for the metric (2.4), the following;:

H’(O)_ _ 1 Iy 1
0017 = sarop B OI(0) ~611(0)” ~ QI (0)],

kl = H(O),‘kz =
and also: :
32 3\~
Q(s) = — ((+1)" =)
1425% =252 +1+s*+35%2 —3b%s%2 —s5v/s2 + 1+ 3sb?\/s2 +
(52\/52 +14+Vs2+1— s3>

I(s) =

Finally we obtain:
kl = 1,‘k2 = —4}]{3 = —
Replacing all of this in Theorem 1.2, finally we proved the above theorem. g

Next, using an important result from [30], we will compute the norm of the mean Cartan
torsion for the new metric (2.4). First, let’s recall this classical result:

Theorem 3.6. ([30]) Let F = a¢(s) be a non-Riemann («, B)-metric on a manifold M of di-
mension n > 3. Then the norm of Cartan and mean Cartan torsion of F, satisfy the following

relation:
3p% 4 6pq + (n +1)q?
nm=¢p Pt D8y, 68)

where p = p(x,y), g = q(x,y) are scalar function on TM, satisfying p +q = 1 and given by
the following:

n+1

1 [s(99" +0'¢") — 99'] (3.9)

m=¢{p—s¢'} (3.10)
_ B S(P” B ﬂ/ B _3S¢// + (b2 _ 52)4)//
A= (n 2)¢_S¢, (n+1) S s (3.11)

After tedious computations in Maple 13 of all above relations, we can formulate:

p=

_ B o ,
Theorem 3.7. Let F = w (1 - W), be the («, B)-metric defined in (2.4) on the manifold
M of dimension n > 3.

3p% 4 6pq + (n +1)q?
nm:¢P Pt D8y,

where p = p(x,y), q = q(x,y) are scalar function on TM, satisfying p + q = 1 and given by
3/2 3\t
a = (( +1) 3) ; (3.12)
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(—6s%+ (—8—8n)s” + (66> —9)s®) Vs2 +1

+
(—55 +Vs?2 4+ 1(s2 4+ 1)? —4s3+3sb2) (—\/m—f—s) (53 — m(sz—kl)) (s2+1)
(3.13)
(2—25n)s°+ (=3+9b)s*+ ((12n—15)b* — 8 — 8n) s> +3b?s*> +3b* (n + 1) s) 52+1+

(—55 + V62 +1(s2+1)2 — 483 + 3sb2) (—m—l— s) (53 — V2 4+ 1(s2 + 1)) (s+1)
657+ (848n)s®+ (=612 +12) s7 + (291 +2)s° + (9 — 121?) s° N
(—55 + V2 +1(s2 4 1)2 — 4s3 + 3sb2> (—\/m—i— s) (s3 — /2 F1(s2 + 1)) (s2+1)
(15-12n)b* +15+15n) s* + (3 —9b?) > + (7Tn+7)s*> —3sb?> +n+1 _
(—55 + V62 +1(s2+1)2 — 483 + 3sb2> (—m—k s) <s3 — V2 +1(s2 + 1)) (s> + 1),
n41(3vVs2+1s2 — 483+ (Sz+1)3/2
p= a1A< (s2+1)° >; q=1
Lemma 3.1. Let F be the («, B)-metric given in (2.4). Then F is of non-Randers type if & # 0
Proof. We know from (1.4), that:
® = —(Q(s) —sQ'(s)) (nA +1+5Q(s)) — (b* —5*)(1+5Q(5))Q"(s)

After tedious computations, and imposing the condition ®(s) = 0, one obtains:

1 1 1 3
2 212 2 2 _ T2 Y2 6
a[(( 3V +1+4n) /B +ua +24( 51 T gt 24n+8b>/3>(x+
7 7 7 10
3 2 _ f2 T 2 L 2 2 2 4
(15[% (nb 5b n 5) 3<nb 3" 3>ﬁ B +oc)oc+
1 13 5 9 23
5(_ =~ 2 M2 A VA 4 2 2 2
<24,B ( 5 2n +nb 1 b) 24<nb g 4b 2471),8 B +(x>¢x+

(—24 +54n + 48b%) p°/ B2 + a2 +24 <—$n+g—2b2> /37] =16p° <ﬁ— \//52+a2> (—2+n)

Finally, we observe that 82 is not divisible with a? and from this we conclude that the
metric (1) is not of Randers type because ® # 0. O

A=

—p. (3.14)

Theorem 3.8. Let F be the («,B)-metric given in (2.4) with the scalar flag curvature K =
K(x,y) over a Finsler space. Then, F is a weak Berwald metric if and only if F is a Berwald
metric and K = 0. Then, F must be locally Minkowskian.

Proof. In the above Lemma, we have proved that the («, )-metric (2.4) can’t be Riemann-
ian. We will prove now the necessity of this theorem, because the sufficiency is obvious.
We will asume that the metric F given in (2.4) is weak Berwald. By Lemma 1.1, we know
that S = (n +1)c(x)F, with ¢(x) = 0 and roo = 0; s;; = 0.

From [25], we know that for a Finsler metric F of constant curvature K, the following
equality holds:

Jimy™ + KF?I; = 0
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where J; is given in (9).
In [25] the following is computed:

_ . 1

J= ]ibl = —W {Tl (1’00 — ZIXQS()) + (XTz(To + So)}
where ¥; and ¥ are given as follows (see [8]):

!/
N
¥ = /b2 — 8273 bA3S ; Yo=2(n+1)(Q—sQ") +3%.
2
If F is of constant flag curvature K, then we know from [30], the following:
21(6'-G) o
i (Al _ Al 2027 _
]‘mym_]lT—Za—yli (G —G) + K« ¢ I, =0.

Contracting by ¥/, for:

Sio = S i '
]i:—czpai; J=0; Gl—Glzthsf),

one obtains:
Dsio ik Ds)o I !
2Aloc s + SAx <5Q50 + Q'sh(b? — 52)> — KF
and from this, one obtains:

sioShA — K (¢ — s¢') (b* — %) = 0. (3.15)

(DSiO
2A

(¢ —s¢')(b* —s*) =0

Replacing in (1.4),
N ((2;34 6B —at (362 — 1)) /B2 + a2 — af + 3 (=1 + b?) pPat — 7B — 256)
A P

E (-VFTe+5) (28 +a2+p VP FR)
Also, when we compute K(¢'(s)) (1 — ¢(s)) ¢’ (s) (b?> — s?)a?, one obtains:
K(¢'(s)) (1= (s)) ¢/ (s)(0* — 5*)a* =
K(VB+a2 =) (VB + a2+ B+ o2 — B°) (1P — 2)

(B +a2)°
If we multiply sjosiA — Ka¢p(¢p — s¢’) (b* — s2) = 0, with

(B* + a2)? <ﬁ—\/m>3<252+“2+5 a2+[32>2

and replacing, after computations, we get:

si0SoB

(a2 + ) (300 — 6% — 26" — u*) +
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(a2 + ) <2ﬁ5 +7B%% + 3 (1 — bZ)) ]

= Ka?(B* + a?)? (/3 — WY (2/32 +a%+ Byfa?+ /52>2 : (3.16)

The right term of the above relation is divisible with a?>. Hence, we can get the flag cur-

vature K = 0 because a # 0 and f is not divisible with 2. Replacing K = 0 in (3.16), we

et sjpsh = a;i(x)shsi = 0. But (a;;(x)) is positive definite, so si, = 0 = B is closed.
8 0 j\X)5050 j p 0

By 100 = 0 and sp = 0, we know that f is parallel with respect to x. Then, we conclude

that the («, B)-metric given by (2.4) is a Berwald metric and must be locally Minkowskian.
O

4. CONCLUSIONS

In this paper we succeed to construct and to investigate from many points of view a
new type of Finsler metric which can be obtained using the Laplace transform. The
Laplace transform is very important not just in mathematics but also in physics because
converts integral and differential equations into algebraic equations and this procedure
has multiple applications in physics, for instance at the study of the study of the signals.
For the new Finsler metric obtained in this paper with the use of Laplace transform for
the Bessel function of the first kind J;(x), we have studied the mean Cartan torsion,
the local duality, the S-curvature and also the variational problem for a Finsler space
endowed with this new metric. Finally, we have proved that this new metric is not of
Randers type, nor Riemann type and we proved that is a Berwald metric and so this
metric is locally Minkowskian. In our future works we will try to extend this procedure
of construction of such Finsler metrics and also we will try to investigate some new class
of such metrics which arise from Laplce transform.
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