Citations

1. The book  Fundamental theorems of triangle geometry in:

1.1. Florentin Smarandache, Limits of Recursive Triangle and Polygon Tunnels, http://arxiv.org/pdf/1006.0111.pdf

1.2.  Ion Pătraşcu and Florentin Smarandache, Pantazi’s Theorem Regarding the Bi-orthological Triangles, http://www.scribd.com/doc/37286762/Pantazi’s-Theorem-Regarding-the-Bi-orthological-Triangles-by-Ion-Patrascu-and-Florentin-Smarandache

1.3. Dorin Andrica, Three proofs to an interesting property of cyclic quadrilaterals, International Journal of Geometry, Vol. 2, No.1, 2013, 54-59.

1.4.   Ion Pătraşcu and Florentin Smarandache, The Geometry of Homological Triangles, The Education Publisher, USA, 2012.

1.5.  Florentin Smarandache,  Nine Solved and Nine Open Problems in Elementary Geometry,  http://arxiv.org/pdf/1003.2153.pdf

1.6.  Ion Pătraşcu and Florentin Smarandache, Two Triangles with the Same Orthocenter and a Vectorial Proof of
Stevanovic’s Theorem, http://arxiv.org/pdf/1102.0209.pdf

1.7.  Ion Pătraşcu and Florentin Smarandache, An Application of Sondat’s Theorem Regarding the Orthohomological Triangles, http://vixra.org/pdf/1006.0069v1.pdf

1.8.   Ion Pătraşcu , O generalizare a teoremei lui Cosnita, Recreatii Matematice, No.2, 2010, Iasi, 102-103.

1.9.  Petru Braica, A generalization of the isogonal point, International Journal of Geometry, Vol. 1, No.1, 2012, 41-45.

1.10.  Ion Pătraşcu and Florentin Smarandache,  Two Remarkable Ortho-Homological Triangles, http://vixra.org/pdf/1009.0006v3.pdf

1.11. Ion Pătraşcu, Smarandache’s Orthic Theorem, http://vixra.org/pdf/1009.0009v1.pdf

1.12. Gheorghe Szollosy and Ovidiu Pop – A new proof of Neuberg’s theorem and one application,  International Journal of Geometry, Vol. 1 (2012), No. 1, 5 – 9.

1.13. Ovidiu Pop and Rodica Pop, About the angle bisector in a triangle, International Journal of Geometry, Vol. 1 (2012), No. 1, 5 – 9.

1.14. Florentin Smarandache, Multispace & Multistructure. Neutrosophic Transdisciplinarity, North European Scientific Publishers, Helsinki, Finland, 2010. ISBN: 978-952-67349-2-7

1.15. Dorin Andrica, The extremum of a function defined on the euclidean plane, International Journal of Geometry, Vol. 3 (2014), No. 2, 20-24.

1.16. Ovidiu T. Pop and Sandor N. Kiss, About a construction problems, International Journal of Geometry, Vol. 3 (2014), No. 2, 14-19.

1.17. Sandor N. Kiss and Ovidiu T. Pop – On the four concurrent circles, Global Journal of Advances Research on Classical and Modern Geometries, Vol. 3 (2014), No. 2, 91-101.

1.18. Ion Pătraşcu and Florentin Smarandache, Variance of Topics of Plane Geometry, Education Publishing, Ohio, 2013, USA.

1.19. Jose Luis Dıaz-Barrero and F. Gispert-Sanchez, Thales, Ceva and Menelaus, Arhimede Mathematical Journal, Vol. 1, No. 1, 19-31, 2014, Spain.

1.20. M. Miculita – A new trigonometric proof to Ptolemy theorems in cyclic quadrilateral, International Journal of Geometry, Vol. 6 (2017), No. 2, 109-111.

1.21. T. Q. Hung – Feuerbach’s Theorem on right triangle with an extension, International Journal of Geometry, Vol. 6 (2017), No. 2, 103-108.

1.22. Dorin Andrica – 4 teme pentru perfectionarea profesorilor – Geometrie, Ed. Casa Cartii de Stiinta, Cluj-Napoca, 2017.

1.23. Gh. Alexe, G. Serban – Ceviene si rapoarte, Gazeta Matematica, Nr. 12, 2022, 547-551.

 

2. The article  Menelaus’s theorem for hyperbolic quadrilaterals in the Einstein relativistic velocity model of hyperbolic geometry in:

2.1. Nilgün Sönmez and A.A. Ungar, The Einstein Relativistic Velocity Model of Hyperbolic Geometry and Its Plane Separation Axiom, Advances in Applied Clifford Algebras, October 2012 – Springer.

2.2. Quan Lin, Gyrosymmedian Point, (to appeared).

2.3. Abraham A. Ungar, Analytic hyperbolic geometry in n dimensions – an introduction, CRC Press – A Science Publishers Book, New York, 2015.

2.4. Abraham A. Ungar, Relativistic- hyperbolic barycentric coordinates and the geometry of relativistic quantum states, Fifteenth International Conference on Geometry, Integrability and Quantization June 7–12, 2013, Varna, Bulgaria Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, Editors Avangard Prima, Sofia 2014, pp 259–280.

2.5. Abraham A. Ungar, The Intrinsic Beauty, Harmony and Interdisciplinarity in Einstein Velocity Addition Law: Gyrogroups and Gyrovector Spaces, Mathematics Interdic iplinary Research 1 (2016), 5 − 51.

2.6. Abraham A. Ungar, Hyperbolic Geometry, Proceedings of the Fifteenth International Conference on Geometry, Integrability and Quantization, 2013, Bulgaria

2.7. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Essays in Mathematics and its Applications, 2016 – Springer

2.8. Abraham A. Ungar, From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups, Mathematics Interdisciplinary Research 1 (2016), 229 − 272.

2.9. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Esssays in Mathematics and its Applications, Springer, 2016, 563-663.

 

3. The article  A geometric proof of Blundon ′s inequalities in:

3.1. Temistocle Barsan, Dubla inegalitate a lui Blundon revizitata, Recreatii Matematice, No.1, 2012, Iasi, 22-24.

3.2.  T. Andreescu, D. Andrica – Complex Numbers from A to.. Z, Birkhauser, 2013.

3.3. Jian Liu, On a geometric inequality of Klamkin, Australian Journal of Mathematical Analysis and Applications, 2014.

3.4. T. Andreescu, D. Andrica – Complex Numbers and Geometry, Complex Numbers from A to.. Z, Springer, 2014.

3.5.  T. Andreescu, D. Andrica – Answers, Hints, and Solutions to Proposed Problems, Complex Numbers from A to.. Z, Springer, 2014.

3.6.  T. Andreescu, D. Andrica – Complex Numbers in Algebraic Form, Complex Numbers from A to.. Z, Springer, 2014.

3.7. T. Andreescu, D. Andrica – Complex Numbers in Trigonometric Form, Complex Numbers from A to.. Z, Springer, 2014.

3.8. T. Andreescu, D. Andrica -More on Complex Numbers and Geometry, Complex Numbers from A to.. Z, Springer, 2014.

3.9. T. Andreescu, D. Andrica -Olympiad-Caliber Problems, Complex Numbers from A to.. Z, Springer, 2014.

3.10. J. Liu, A refinement of an equivalent form of a Gerretsen inequality, Journal of Geometry, Springer, 2015, doi 10.1007/s00022-015-0275-1.

3.11. Dorin Andrica – 4 teme pentru perfectionarea profesorilor – Geometrie, Ed. Casa Cartii de Stiinta, Cluj-Napoca, 2017.

3.12. Jian Liu – A geometric inequality with applications, Journal of Mathematical Inequalities, Vol. 10, No. 3, 2016, 641-648.

3.13. Paris Pamfilos – Triangles sharing their Euler circle and circumcircle, International Journal of Geometry , Vol 9, 2020, 5-24.

3.14. J. Liu – Further generalization of Walker’s inequality in acute triangles and its applications, AIMS Mathematics, 5(6), 6657-6672.

3.15. D. Andrica, G. Turcas, Pairs of rational triangles with equal symmetric invariants, Journal of Number Theory, 221 (2) , 2020.

3.16. J. Liu – On trigonometric inequality in acute triangles, Turkish Journal of Inequalities, 5(2)(2021), 1-20.

3.17. J. Liu – On the fundamental triangle inequality and Gerretsen’s double inequality, Journal of Geometry, 2022.

3.18. Yu.N. Maltsev, E.P. Petrov – On Some Properties of a Quadrilateral Whose Vertices are Remarkable Points of the Triangle, Izvestiya of Altai State University, 2022.

 

4. The article  Smarandache’s Cevian Triangle Theorem in The Einstein Relativistic Velocity Model of Hyperbolic Geometry in:

4.1. M. Khoshnevisan, Smarandache’s Cevians theorem (I), Scientia Magna, Vol. 6 (2010), No. 1, 80-81.

4.2. Florentin Smarandache,  Nine Solved and Nine Open Problems in Elementary Geometry,  http://arxiv.org/pdf/1003.2153.pd

4.3. Quan Lin, Gyrosymmedian Point, (to appeared).

4.4.  Florentin Smarandache, Multispace & Multistructure. Neutrosophic Transdisciplinarity, North European Scientific Publishers, Helsinki, Finland, 2010. ISBN: 978-952-67349-2-7

4.5. Abraham A. Ungar, From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups, Mathematics Interdisciplinary Research 1 (2016), 229 − 272.

 

5. The article  The Hyperbolic Menelaus Theorem in The Poincaré Disc Model of Hyperbolic Geometry  in:

5.1. Wikipedia, The Free Encyclopedia,  http://en.wikipedia.org/wiki/Gyrovector_space

5.2. Abraham A. Ungar, Analytic hyperbolic geometry in n dimensions – an introduction, CRC Press – A Science Publishers Book, New York, 2015.

5.3. Abraham A. Ungar, The Intrinsic Beauty, Harmony and Interdisciplinarity in Einstein Velocity Addition Law: Gyrogroups and Gyrovector Spaces, Mathematics Interdic iplinary Research 1 (2016), 5 − 51.

5.4. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Essays in Mathematics and its Applications, 2016 – Springer

5.5. M. Lassak, A note on generalization of Monge’s theorem, 2021.

 

6. The article  Some Properties of the Newton-Gauss Line in:

6.1. S.M., On the Complete Quadrilateral Configurations, http://problemsolversparadise.wordpress.com/2012/07/

6.2. Dorin Andrica and George Turcas, The converse of the Newton-Gauss theorem, IJG, Vol 10 (1) (2021), 79-84.

 

7.  The article Smarandache’s pedal polygon theorem in the Poincaré  disc model of hyperbolic geometry in:

7.1. Nilgün Sönmez and A.A. Ungar, The Einstein Relativistic Velocity Model of Hyperbolic Geometry and Its Plane Separation Axiom, Advances in Applied Clifford Algebras, October 2012 – Springer

7.2. Quan Lin, Gyrosymmedian Point, (to appeared).

7.3. A.V. Kostin, I.Kh. Sabitov – Smarandache Theorem in Hyperbolic Geometry, Journal of Mathematical Physics, Analysis, Geometry 2014, vol. 10, No. 2, pp. 221–232.

7.4.  Florentin Smarandache, Multispace & Multistructure. Neutrosophic Transdisciplinarity, North European Scientific Publishers, Helsinki, Finland, 2010. ISBN: 978-952-67349-2-7

7.5. Abraham A. Ungar, Analytic hyperbolic geometry in n dimensions – an introduction, CRC Press – A Science Publishers Book, New York, 2015.

7.6. Abraham A. Ungar, The Intrinsic Beauty, Harmony and Interdisciplinarity in Einstein Velocity Addition Law: Gyrogroups and Gyrovector Spaces, Mathematics Interdic iplinary Research 1 (2016), 5 − 51.

7.7. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Essays in Mathematics and its Applications, 2016 – Springer

7.8. Abraham A. Ungar, From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups, Mathematics Interdisciplinary Research 1 (2016), 229 − 272.

7.9. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Esssays in Mathematics and its Applications, Springer, 2016, 563-663.

 

8. The article Trigonometric proof of Steiner-Lehmus theorem in hyperbolic geometry in:

8.1.  Nilgün Sönmez and A.A. Ungar, The Einstein Relativistic Velocity Model of Hyperbolic Geometry and Its Plane Separation Axiom, Advances in Applied Clifford Algebras, October 2012 – Springer

8.2. Quan Lin, Gyrosymmedian Point, (to appeared).

8.3. Abraham A. Ungar, Analytic hyperbolic geometry in n dimensions – an introduction, CRC Press – A Science Publishers Book, New York, 2015.

8.4. Keiji Kiyota,  A trigonometric proof of Steiner-Lehmus theorem in hyperbolic geometry, http://arxiv.org/pdf/1508.03248.pdf

8.5. Abraham A. Ungar, The Intrinsic Beauty, Harmony and Interdisciplinarity in Einstein Velocity Addition Law: Gyrogroups and Gyrovector Spaces, Mathematics Interdic iplinary Research 1 (2016), 5 − 51.

8.6.  Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Essays in Mathematics and its Applications, 2016 – Springer

8.7. Abraham A. Ungar, From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups, Mathematics Interdisciplinary Research 1 (2016), 229 − 272.

8.8. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Esssays in Mathematics and its Applications, Springer, 2016, 563-663.

8.9. Mowaffaq Hajja, The hyperbolic version of the Steiner-Lehmus theorem, The Mathematical Gazette 101(551):306-307, July 2017, DOI: 10.1017/mag.2017.76

 

 9. The article Pappus’s harmonic theorem in the Einstein relativistic velocity model of hyperbolic geometry in:

9.1.  Nilgün Sönmez and A.A. Ungar, The Einstein Relativistic Velocity Model of Hyperbolic Geometry and Its Plane Separation Axiom, Advances in Applied Clifford Algebras, October 2012 – Springer

9.2. Quan Lin, Gyrosymmedian Point, (to appeared).

9.3. Abraham A. Ungar, Analytic hyperbolic geometry in n dimensions – an introduction, CRC Press – A Science Publishers Book, New York, 2015.

9.4. Abraham A. Ungar, Relativistic- hyperbolic barycentric coordinates and the geometry of relativistic quantum states, Fifteenth International Conference on Geometry, Integrability and Quantization June 7–12, 2013, Varna, Bulgaria Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, Editors Avangard Prima, Sofia 2014, pp 259–280.

9.5. Abraham A. Ungar, The Intrinsic Beauty, Harmony and Interdisciplinarity in Einstein Velocity Addition Law: Gyrogroups and Gyrovector Spaces, Mathematics Interdic iplinary Research 1 (2016), 5 − 51.

9.6.  Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Essays in Mathematics and its Applications, 2016 – Springer

9.7. Abraham A. Ungar, From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups, Mathematics Interdisciplinary Research 1 (2016), 229 − 272.

9.8. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Esssays in Mathematics and its Applications, Springer, 2016, 563-663.

 

10. The article  Variatiuni pe tema punctului lui Cosnita in:

10.1. Ion Pătraşcu , O generalizare a teoremei lui Cosnita, Recreatii Matematice, No.2, 2010, Iasi, 102-103.

 

11. The article  On Panaitopol and Jordan type inequalities in:

11.1. G. D. Anderson, M. Vuorinen and X.-H. Zhang, Topics in special functions III, unpublished manuscript.     http://arxiv.org/pdf/1209.1696.pdf

11.2. J. Sandor, On certain inequalities for hyperbolic and trigonometric functions, Journal of Mathematical Inequalities, Volume 7, Number 3 (2013), 421–425.

11.3.  Milica Makragic, A Method for provingsome inequalities on mixed hyperbolic-trigonometric polynomial functions, o Journal of Mathematical Inequalities, 2016.

 

12. The article Andrica-Iwata’s inequality in hyperbolic triangle in:

12.1. Matematika, Mockba, 2013, ISSN 0235-2184.

 

13. The article A geometric way to generate Blundon type inequalities in:

13.1. T. Andreescu, D. Andrica – Complex Numbers and Geometry, Complex Numbers from A to.. Z, Springer, 2014.

13.2.  T. Andreescu, D. Andrica – Answers, Hints, and Solutions to Proposed Problems, Complex Numbers from A to.. Z, Springer, 2014.

13.3.  T. Andreescu, D. Andrica – Complex Numbers in Algebraic Form, Complex Numbers from A to.. Z, Springer, 2014.

13.4. T. Andreescu, D. Andrica – Complex Numbers in Trigonometric Form, Complex Numbers from A to.. Z, Springer, 2014.

13.5. T. Andreescu, D. Andrica -More on Complex Numbers and Geometry, Complex Numbers from A to.. Z, Springer, 2014.

13.6. T. Andreescu, D. Andrica -Olympiad-Caliber Problems, Complex Numbers from A to.. Z, Springer, 2014.

13.7. D. Andrica, G. Ţurcaş – Pairs of rational triangles with equal symmetric invariants,  Journal of Number Theory, 2020.

 

14. The book Contribution to the Study of the Hyperbolic Geometry in:

14.1. A.V. Kostin, I.Kh. Sabitov – Smarandache Theorem in Hyperbolic Geometry, Journal of Mathematical Physics, Analysis, Geometry 2014, vol. 10, No. 2, pp. 221–232.

 

15. The article On the Carnot theorem in the Poincaré upper half-plane model of hyperbolic geometry in:

15.1. A.V. Kostin, I.Kh. Sabitov – Smarandache Theorem in Hyperbolic Geometry, Journal of Mathematical Physics, Analysis, Geometry 2014, vol. 10, No. 2, pp. 221–232.

 

16. The article Smarandache’s Theorem in the Poincaré upper half-plane model of hyperbolic geometry in:

16.1. A.V. Kostin, I.Kh. Sabitov – Smarandache Theorem in Hyperbolic Geometry, Journal of Mathematical Physics, Analysis, Geometry 2014, vol. 10, No. 2, pp. 221–232.

16.2.  Florentin Smarandache, Multispace & Multistructure. Neutrosophic Transdisciplinarity, North European Scientific Publishers, Helsinki, Finland, 2010. ISBN: 978-952-67349-2-7

 

17. The article The orthopole theorem in the Poincaré disc model of hyperbolic geometry in:

17.1. L Lócsi – A hyperbolic variant of the Nelder–Mead simplex method in low dimensions, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 169–183.

17.2.  L Lócsi – Rational function systems application in signal processing, Budapest, 2014.

17.3. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Essays in Mathematics and its Applications, 2016 – Springer

17.4. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Esssays in Mathematics and its Applications, Springer, 2016, 563-663.

 

18. The article The hyperbolic Stewart theorem in the Einstein relativistic velocity model of hyperbolic geometry in:

18.1. Abraham A. Ungar, Analytic hyperbolic geometry in n dimensions – an introduction, CRC Press – A Science Publishers Book, New York, 2015.

18.2. Abraham A. Ungar, Relativistic- hyperbolic barycentric coordinates and the geometry of relativistic quantum states, Fifteenth International Conference on Geometry, Integrability and Quantization June 7–12, 2013, Varna, Bulgaria Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, Editors Avangard Prima, Sofia 2014, pp 259–280.

18.3. Abraham A. Ungar, The Intrinsic Beauty, Harmony and Interdisciplinarity in Einstein Velocity Addition Law: Gyrogroups and Gyrovector Spaces, Mathematics Interdic iplinary Research 1 (2016), 5 − 51.

18.4. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Essays in Mathematics and its Applications, 2016 – Springer 

18.5. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Esssays in Mathematics and its Applications, Springer, 2016, 563-663.

 

19. The article  Remarks on a new metric in the unity disc of the complex plane in:

19.1. Adara M. Blaga, Cristian Ida- Generalized almost paracontact structures, An. St. Univ. Ovidius Constanta, Vol. 23(1),2015, 53–64.

19.2. GC Crişan, CM Pintea, A Calinescu, C Pop Sitar – Secure traveling salesman problem with intelligent transport systems features,  Logic Journal of the IGPL, 2020.

 

20. The article A new proof of Menelaus’s Theorem of Hyperbolic Quadrilaterals in the Poincaré Model of Hyperbolic Geometry in:

20.1. F. Smarandache, Papers of Mathematics or Applied mathematics, EuropaNova, Brussels, 2014.

 

21. The article  Two new proofs of Goormaghtigh theorem in:

21.1. Wikipedia, the free encyclopedia – Musselman’s theorem, http://en.wikipedia.org/wiki/Musselman%27s_theorem

 

22. The article Van Aubel’s Theorem in the Einstein Relativistic Velocity Model of Hyperbolic Geometry in:

22.1. Jean de Climont, The Worldwide list of dissidents scientists, Editions d’Assailly, ISBN 978-2-9024-2517-4

22.2. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Essays in Mathematics and its Applications, 2016 – Springer

22.3. Abraham A. Ungar, Novel Tools to Determine Hyperbolic Triangle Centers, Esssays in Mathematics and its Applications, Springer, 2016, 563-663.

 

23. Problems: 5.2.13/84 ; 5.2.28/87; 5.2.29/87; 6.2.13/147; 6.2.28/ 176; 6.2.29/177 in Sotirios E. Louridas  Michael Th. Rassias, Problem-Solving and Selected Topics in Euclidean Geometry, Springer, London 2013. ISBN 978-1-4614-7272-8 

 

24. Article  Jordan Type Inequalities Using Monotony of Functions in:

24.1. Milica Makragic, A Method for provingsome inequalities on mixed hyperbolic-trigonometric polynomial functions, Journal of Mathematical Inequalities, 2016.

24.2. Y. Bagul – Inequalities involving circular hyperbolic and exponential functionsJournal of Mathematical Inequalities Volume 11, Number 3 (2017), 695–699. 

24.3. Yogesh J. Bagul, On exponential bounds of hyperbolic cosine, Bulletin of the Society of Mathematicians Banja Luka, ISSN 0354-5792 (o).

24.4. Tatjana Simak, DOKAZIVANJE NEJEDNAKOSTI KOJE UKLJUCUJU HIPERBOLI CKE FUNKCIJE KORISCENJEM STEPENIH REDOVA, Beograd, 2019.

24.5. Y. Bagul – New inequalities involving circular, inverse circular, hyperbolic, inverse hyperbolic and exponential functions, Advances in Inequalities and Applications, 2019.

24.5. K. Nantomah, E. Prempeh, Some inequalities for generalized hyperbolioc functions,  Hal, Maroccan J. of Pure and Appl. Anal., Vol 6, 2020, 76-92.

24.6. R. Chouikha, Ch. Chesneau, Y. Bagul, Some refinement of well-known inequalities involving trigonometric functions, 2020.

 

25. The article The geometric proof to a sharp version of Blundon’s inequalities in: 

25.1. Dorin Andrica – 4 teme pentru perfectionarea profesorilor – Geometrie, Ed. Casa Cartii de Stiinta, Cluj-Napoca, 2017.

25.2. J. Liu – Further generalization of Walker’s inequality in acute triangles and its applications, AIMS Mathematics, 5(6), 6657-6672.

25.3 Y. Maltsev, A. Monastyreva – On some remarkable points and line segments in triangle, Izvestiya University, 2021.

25.4. J. Liu – On trigonometric inequality in acute triangles, Turkish Journal of Inequalities, 5(2)(2021), 1-20.

25.5. J. Liu – On the fundamental triangle inequality and Gerretsen’s double inequality, Journal of Geometry, 2022.

 

26. The article Note of the adjoint Spieker points in:

26.1. Dorin Andrica – 4 teme pentru perfectionarea profesorilor – Geometrie, Ed. Casa Cartii de Stiinta, Cluj-Napoca, 2017.

 

27. The article New aspects of Ionescu Weitzenbock’s inequality in: 

27.1 S. Dragomir and N. Minculete – On several inequalities in an Inner Product Space.

27.2. M. Celli – Vectors and a half-disk of triangle shapes in Ionescu-Weitzenbock’s inequality.

27.3.  A Glesser, M Rathbun, B Suceavă, A Gentle Introduction to Inequalities: A Casebook from the Fullerton Mathematical Circle, Journal of Math Circles, 2020.

27.4. D. Andrica, D. St. Marinescu – Sequences interpolating some geometric inequalities, Creat. Math. Inform., 28 (2019), 9-18.

27.5. D. Andrica, D. St. Marinescu – Dynamic Geometry Generated by the Circumcircle Midarc Triangle, Analysis, Geometry, Nonlinear Optimization and Applications, pp. 129-156 (2023).

 

28. The article Smarandaches minimum theorem in the einstein relativistic velocity model of hyperbolic geometry in:

 28.1. A. Ungar – Relativistic-Geometric Entanglement: Symmetry Groups of Systems of Entangled Particles, 2018.

 

29. The article Cevian of rank (k,l,m) in triangles in:

29.1 N. Azizah, S. Gemawati, Hasriati – Alternatif menentukan lingkaran singgung luar segitiga dan titik Gergonne, FMIPA Universitas Riau, 2014, 57-66.

 

30. The article A new hyperbolic metric in :

30.1. GC Crişan, CM Pintea, A Calinescu, C Pop Sitar – Secure traveling salesman problem with intelligent transport systems features,  Logic Journal of the IGPL, 2020.

 

31. The article About the Japanese theorem in:

 31.1 I. Daziga – Pengembangan Teorema Japanese untuk segilima siklik, Jurusan Matematika, 2021.

31.2.  N. Wahyuni, S. Gemawat – Modification of the Japanese Theorem on Heptagon, International Journal of Mathematics Trends and Technology, Volume 68 Issue 6, 205-210, June 2022.

 

32. The article On the reversible geodesics of a Finsler space endowed with a special deformed (α, β)-metric in:

32.1.  P Kumar, A Ar – Reversible geodesics of a Finsler space with generalized (α, β)-metric,   Gulf Journal of Mathematics, Vol 14, Issue 1 (2023) 125-138, 2023.

 

33. The article The χ-Hessian Quotient for Riemannian Metrics  in:

33.1. Yanlin Li, Piscoran Laurian-Ioan – Zermelo’s navigation problem for some special surfaces of rotation, AIMS Mathematics, 8(7):16278-16290, DOI: 10.3934/math.2023833