Articles and papers

1. Cătălin BarbuMenelaus’s Theorem for Hyperbolic Quadrilaterals in The Einstein Relativistic Velocity Model of Hyperbolic Geometry –Scientia Magna, Nr 6/2010 – China ISSN 1556-6706

2. Cătălin BarbuSmarandache’s Cevian Triangle Theorem in The Einstein Relativistic Velocity Model of Hyperbolic Geometry – Progress in Physics Nr 3/2010, 69 -70, –USA – ISSN 1555-5534.  Zbl 1205.83010

3. Dorin Andrica, Cătălin BarbuA Geometric Proof of Blundon’s Inequalities– Mathematical Inequalities & Applications, Volume 15, Number 2 (2012), 361–370.  Zbl pre06037642

4. Cătălin Barbu, Laurian Pişcoran – Some hyperbolic concurrency results in the Poincare disc –Carpathian Journal of Mathematics, Vol. 28, No.1/2012, 9 – 15. Zbl pre06109407

5. Cătălin Barbu, Laurian Pişcoran – Andrica-Iwata’s Inequality in hyperbolic triangle– Mathematical Inequalities & Applications, Volume 12, Number 3 (2012), 631–637. Zbl pre06074811

6. Cătălin Barbu Trigonometric Proof of Steiner-Lehmus Theorem in Hyperbolic Geometry– Acta Universitatis Apulensis, No 23/2010, 63-67. Zbl 1230.51021

7. Cătălin Barbu, The Isotomic Transversal Theorem and the Neuberg’s Theorem in Hyperbolic Geometry, Scientific Studies and Research Series Mathematics and Informatics, Vol. 20(2010), No. 1, 37-44. Zbl pre06062985

8. Cătălin Barbu, L. Pişcoran – The Hyperbolic Nobbs Theorem in the Poincaré Disc Model of Hyperbolic Geometry, International Journal Forum, Vol. 5/2010, no.66, 3255-3258, Bulgary. Zbl pre05899839

9. Cătălin Barbu, Ion Patrascu – Some properties of Newton-Gauss line, Forum Geometricorum, Vol 12 (2012), 149-152, USA. Zbl pre06035511

10. Cătălin BarbuSmarandache’s Minimum Theorem in the Einstein Relativistic Velocity Model of Hyperbolic Geometry, Progress in Physics, no. 1/2011, 68-70, USA.

11. Cătălin Barbu, Laurian Pişcoran, The Hyperbolic Zajic Theorem in the Poincaré Disc Model of Hyperbolic Geometry, International Journal Forum, Vol. 5/2010, no.66, 3251-3254, Bulgaria. Zbl pre05899838

12. Laurian Pişcoran, Cătălin Barbu, New inequalities on hyperbolic triangles, International Journal of Pure and Applied and Technology, Vol. 1/2010, 7-10, India.

13. Cătălin Barbu, Laurian Pişcoran – The Hyperbolic Gülicher Theorem in the Poincaré Disc Model of Hyperbolic Geometry, Mathematica Aeterna, Vol. 1, 2011, no. 05, 305-311, Bulgary.

14. Cătălin Barbu, Laurian Pişcoran – The orthopole theorem in the Poincaré Disc Model of Hyperbolic Geometry, Sapientia, Vol. 4/2012, 20-25.

15. Cătălin Barbu, The Hyperbolic Stewart Theorem in the Einstein Relativistic Velocity Model of Hyperbolic Geometry, Annals of Oradea University – Mathematics Fascicola, Vol. XVIII (2011), 133-138. Zbl pre06038549

16. Cătălin Barbu, Van Aubel’s Theorem in the Einstein Relativistic Velocity Model of Hyperbolic Geometry, Progress in Physics, Vol. 1, October 2012, 30-32.

17. Cătălin Barbu, Laurian Pişcoran, Pappus’s Harmonic Theorem in the Einstein Relativistic Velocity Model of Hyperbolic Geometry, Studia Universitaris Babeş-Bolyai Mathematica, Vol. LVI, No. 1, 101-107.  Zbl 240.51006

18. Nicuşor Minculete and Cătălin Barbu, About the area of triangle determined by cevians of rank (k,l,m), Scientific Studies and Research Series Mathematics and Informatics, Vol. 21 (2011), No. 1, 139-148. Zbl pre06048687

19. Nicuşor Minculete and Cătălin Barbu, Cevians of rank (k,l,m) in triangle, International Journal of Geometry, Vol.1, No. 2, 67- 79, 2012. Zbl 1228.51017

20. Cătălin Barbu, Laurian Pişcoran, Inequalities for a Hyperbolic Triangle, Filomat journal of mathematics, (submmited).

21. Laurian Pişcoran, Cătălin Barbu, On a new metric in complex plane disc, Scientific Studies and Research Series Mathematics and Informatics, (submmited).

22. Ion Pătraşcu, Cătălin Barbu, Two new demonstrations of Goormaghtigh’s theorem, International Journal of Geometry, Vol.1, No. 1, 10-19, 2012.  MR 2955636

23. Cătălin Barbu, Nilgün Sönmez, On the Carnot theorem in the Poincaré upper half-plane model of hyperbolic geometry,  Acta Universitatis Apulensis, Vol.31, 2012.

24. Nilgün Sönmez, Cătălin Barbu, Smarandache’s Theorem in the Poincaré upper half-plane model of hyperbolic geometry, (submmited).

25. Cătălin Barbu, Nilgün Sönmez, The othopole theorem in the Poincaré upper half-plane model of hyperbolic geometry,  Global Journal of Advanced Research on Classical and Modern Geometries, Vol. 2, 2012, 11-14.

26. Laurian Pişcoran, Cătălin Barbu, Inequalities with gudermannians in hyperbolic triangle, Global Journal of Advanced Research on Classical and Modern Geometries, Vol. 1, 2012, 11-14.

27. Ion Pătraşcu, Cătălin Barbu, The point of Cosnita, Octogon Mathematical Magazine, Vol. 19, No. 2, 2011, 379-385.

28. Nicuşor Minculete, Cătălin Barbu, Gheorghe Szollosy, About The Japanese Theorem, Crux Mathematicorum, Vol. 38, No. 5, May 2012, 188-193.

29. Dorin Andrica, Cătălin Barbu  –  A Sharpened Version of the Fundamental Triangle Inequality –  (submmited)

30. Dorin Andrica, Cătălin Barbu, Nicuşor Minculete – A geometric way to generate Blundon type inequalities, Acta Universitatis Apulensis, 31 (2012), 96-106.

31. Cătălin Barbu, Florentin Smarandache, A new proof of Menelaus’s Theorem of Hyperbolic Quadrilaterals in the Poincaré Model of Hyperbolic Geometry, International Journal of Mathematical Combinatorics, 3(2012), 118-223.

32. Dorin Andrica, Cătălin BarbuThe Hyperbolic Desargues Theorem in The Poincaré Model of Hyperbolic Geometry, Studia Universitatis Babeş – Bolyai Mathematica, Vol. 58, No. 4, 457-461, 2013.

33. Laurian Pişcoran, Cătălin BarbuA new hyperbolic metricDifferential Geometry – Dynamical Systems, Balkan Society of Geometers, Geometry Balkan Press, Vol.15, 2013,  70-77.

34.P. Laurian, C. Barbu, Monica Lauran, K-Bezier type curves generated by a King type operator, Global Journal of Advances Research on Classical and Modern Geometries, Vol. 2, No. 1, 50-54, 2013.

35. Laurian Pişcoran, Cătălin Barbu, About a class of rational TC-Bezier curves with two shape parameters, Studia Universitatis Babeş – Bolyai Mathematica, Vol. 58, No. 4, 523-528, 2013.

36. Laurian Pişcoran, Cătălin Barbu, Remarks on a new metric in the unity disc of the complex plane, Carpathian Journal of Mathematics, Vol. 30 (2014), No. 2, 239 – 244.

37. Cătălin Barbu, Laurian Pişcoran – Jordan type inequalities using monotony of functions, Journal of Mathematical Inequalities, Vol. 8, No. 1 (2014), 83-89.

38. Dorin Andrica, C. BarbuThe Hyperbolic Version of Ceva’s Theorem in The Poincaré Disc Model, Automation, Computers, Applied Mathematics, Vol. 19 (2010), No. 1, 35-43.

39. Cătălin Barbu, Florentin Smarandache – The Hyperbolic Menelaus Theorem in The Poincaré Disc Model of Hyperbolic Geometry, Italian Journal of Pure and Applied Mathematics, No. 30, 67-72, 2013.

40. Cătălin Barbu, Laurian Pişcoran – Observations on the pedal triangle, Sesiunea interjudeţeană de comunicări ştiinţifice şi metodice a profesorilor de matematică – Ediţia a XVII-a, Fărcaşa, Maramureş, 17 mai, 2014.

41. L. Pişcoran, Cătălin Barbu – A new class of Bezier curves, Sesiunea interjudeteana de comunicari stiintifice a profesorilor de matematica din zona de nord, Zalau, 23 May, 2015, Romania.

42. E. Stoica, N. Minculete, C. Barbu  New aspects of Ionescu-Weitzenböck’s inequality, The IX-th International Conference of Differential Geometry and Dynamical Systems, 8 – 11 October 2015, University Politehnica of Bucharest – Romania

43. Emil Stoica, Nicusor Minculete, Catalin BarbuNew aspects of Ionescu–Weitzenbock’s inequality, Balkan Journal of Geometry and Its Applications, Vol. 21 (2) 2016, 95-101.

44. Nicusor Minculete, Catalin Barbu – Inradii and Diagonals, The American Mathematical Monthly,  2016, Vol. 122 (6), 607-608.

45. Dorin Andrica, Cătălin Barbu, Laurian Pişcoran – The geometric proof to a sharp version of Blundon’s inequalities, Journal of Mathematical Inequalities, Volume 10, Number 4 (2016), 1137–1143.

46.  L. Pişcoran, Cătălin BarbuApplications of Kantorovich inequalities, SSMR, Baia Mare, 2016.

47. Dorin Andrica, Cătălin Barbu, A. Lupescu, Note of the adjoint Spieker points, International Journal of Geometry, Vol. 6 (2017), No. 1, 61 – 66.

48. L. Pişcoran, Dan Miclaus, Cătălin BarbuO metoda de tip Steffensen-Homeier pentru rezolvarea ecuatiilor neliniare, Farcasa, 2017.

49. Cătălin BarbuTriangle borded with squares,  Mathematical Reflections, No. 4 (2010), USA.

50. Cătălin BarbuConciclity conditions for a remarkables points in a triangle – Gazeta Matematică , No. 10, 2009 –ISSN 1584-9333.

51. Cătălin BarbuVecten’s Triangles – Să înţelegem matematica, No. 1, 2009, ISSN – 1221 – 6461.

52. Cătălin Barbu, Varitions of Coşniţă’s point –  Gazeta matematică,  No. 4, 2010, ISSN 1584-9333.

53.  Cătălin BarbuBevan’s point – Să înţelegem matematica, No. 1, 2010, ISSN – 1221 – 6461.

54. Cătălin Barbu, Fuhrmann’s triangles –  Symposion Mathematicae, No. 2, 2009, ISSN 1843 -9241.

55. Dorin Andrica, Cătălin Barbu, Laurian Pişcoran – The geometry of Blundon’s configuration – Journal of Mathematical Inequalities, Volume 13, Number 4 (2019), 2391.

56. L. Pişcoran, Cătălin Barbu, A. Ali, S. Kumar, I. Schiopu – A study of a Finsler metric arising from Laplace transform, Global Journal of Advances Research on Classical and Modern Geometries, Vol. 9, No. 1, 57-73, 2020.

57. Laurian Pişcoran, Catalin Barbu and B. Najaf – On the conformal change of a special class of (α, β)-metrics  Balkan Journal of Geometry and Its Applications, Vol. 25 (1) 2020, 104-116.

58. Laurian Pişcoran, Najafi Behzad, Catalin Barbu, Tabatabaeifar Tayebeh – The deformation of an (α, β)- metric, International Electronic Journal of Geometry, 2021.

59. Laurian Pişcoran, Catalin Barbu, A. Al i- On the reversible geodesics of a Finsler space endowed with a special deformed (α, β) -metric, AUT J. Math. Com., 2(1) (2021) 73-80.

60. Laurian Pişcoran, Akram Ali, Catalin Barbu, Ali Alkhaldi – The α-Hessian quotient for Riemannian metrics, Axioms, Vol. 13, No. 4, 2021.